Как распространяется ультразвук от излучателя. Что такое ультразвук и как он используется в промышленности. Практическое применение низкоэнергетических ультразвуковых колебаний

Дмитрий Левкин

Ультразвук - механические колебания, находящиеся выше области частот, слышимых человеческим ухом (обычно 20 кГц). Ультразвуковые колебания перемещаются в форме волны, подобно распространению света. Однако в отличие от световых волн, которые могут распространяться в вакууме, ультразвук требует упругую среду такую как газ, жидкость или твердое тело.

, (3)

Для поперечных волн она определяется по формуле

Дисперсия звука - зависимость фазовой скорости монохроматической звуковых волн от их частоты . Дисперсия скорости звука может быть обусловлена как физическим свойствами среды, так и присутствием в ней посторонних включений и наличием границ тела, в котором звуковая волна распространяется.

Разновидности ультразвуковых волн

Большинство методов ультразвукового исследования использует либо продольные, либо поперечные волны. Также существуют и другие формы распространения ультразвука, включая поверхностные волны и волны Лэмба.

Продольные ультразвуковые волны – волны, направление распространения которых совпадает с направлением смещений и скоростей частиц среды.

Поперечные ультразвуковые волны – волны, распространяющиеся в направлении, перпендикулярном к плоскости, в которой лежат направления смещений и скоростей частиц тела, то же, что и сдвиговые волны .

Поверхностные (Рэлеевские) ультразвуковые волны имеют эллиптическое движение частиц и распространяются по поверхности материала. Их скорость приблизительно составляет 90% скорости распространения поперечной волны, а их проникновение вглубь материала равно примерно одной длине волны .

Волна Лэмба - упругая волна, распространяющиеся в твёрдой пластине (слое) со свободными границами, в которой колебательное смещение частиц происходит как в направлении распространения волны, так и перпендикулярно плоскости пластины. Лэмба волны представляют собой один из типов нормальных волн в упругом волноводе – в пластине со свободными границами. Т.к. эти волны должны удовлетворять не только уравнениям теории упругости, но и граничным условиям на поверхности пластины, картина движения в них и их свойства более сложны, чем у волн в неограниченных твёрдых телах.

Визуализация ультразвуковых волн

Для плоской синусоидальной бегущей волны интенсивность ультразвука I определяется по формуле

, (5)

В сферической бегущей волне интенсивность ультразвука обратно пропорциональна квадрату расстояния от источника. В стоячей волне I = 0, т. е. потока звуковой энергии в среднем нет. Интенсивность ультразвука в гармонической плоской бегущей волне равна плотности энергии звуковой волны, умноженной на скорость звука. Поток звуковой энергии характеризуют так называемым вектором Умова - вектором плотности потока энергии звуковой волны, который можно представить как произведение интенсивности ультразвука на вектор волновой нормали, т. е. единичный вектор, перпендикулярный фронту волны. Если звуковое поле представляет собой суперпозицию гармонических волн различной частоты, то для вектора средней плотности потока звуковой энергии имеет место аддитивность составляющих.

Для излучателей, создающих плоскую волну, говорят об интенсивности излучения , понимая под этим удельную мощность излучателя , т. е. излучаемую мощность звука, отнесённую к единице площади излучающей поверхности.

Интенсивность звука измеряется в системе единиц СИ в Вт/м 2 . В ультразвуковой технике интервал изменения интенсивности ультразвука очень велик - от пороговых значений ~ 10 -12 Вт/м 2 до сотен кВт/м 2 в фокусе ультразвуковых концентраторов.

Таблица 1 - Свойства некоторых распространенных материалов

Материал Плотность, кг/м 3 Скорость продольной волны, м/c Скорость поперечной волны, м/c , 10 3 кг/(м 2 *с)
Акрил 1180 2670 - 3,15
Воздух 0,1 330 - 0,00033
Алюминий 2700 6320 3130 17,064
Латунь 8100 4430 2120 35,883
Медь 8900 4700 2260 41,830
Стекло 3600 4260 2560 15,336
Никель 8800 5630 2960 49,544
Полиамид (нейлон) 1100 2620 1080 2,882
Сталь (низколегированный сплав) 7850 5940 3250 46,629
Титан 4540 6230 3180 26,284
Вольфрам 19100 5460 2620 104,286
Вода (293К) 1000 1480 - 1,480

Затухание ультразвука

Одной из основных характеристик ультразвука является его затухание. Затухание ультразвука – это уменьшение амплитуды и, следовательно, звуковой волны по мере ее распространения. Затухание ультразвука происходит из-за ряда причин. Основными из них являются:

Первая из этих причин связана с тем, что по мере распространения волны от точечного или сферического источника энергия, излучаемая источником, распределяется на все увеличивающуюся поверхность волнового фронта и соответственно уменьшается поток энергии через единицу поверхности, т.е. . Для сферической волны, волновая поверхность которой растёт с расстоянием r от источника как r 2 , амплитуда волны убывает пропорционально , а для цилиндрической волны - пропорционально .

Коэффициент затухания выражают либо в децибелах на метр (дБ/м), либо в неперах на метр (Нп/м).

Для плоской волны коэффициент затухания по амплитуде с расстоянием определяется по формуле

, (6)

Коэффициент затухания от времени определяется

, (7)

Для измерения коэффициента также используют единицу дБ/м, в этом случае

, (8)

Децибел (дБ) – логарифмическая единица измерения отношения энергий или мощностей в акустике .

, (9)

  • где A 1 – амплитуда первого сигнала,
  • A 2 – амплитуда второго сигнала

Тогда связь между единицами измерения (дБ/м) и (1/м) будет:

Отражение ультразвука от границы раздела сред

При падении звуковой волны на границу раздела сред, часть энергии будет отражаться в первую среду, а остальная энергия будет проходить во вторую среду. Соотношение между отраженной энергией и энергией, проходящей во вторую среду, определяется волновыми сопротивлениями первой и второй среды. При отсутствии дисперсии скорости звука волновое сопротивление не зависит от формы волны и выражается формулой:

Коэффициенты отражения и прохождения будут определяться следующим образом

  • где D – коэффициент прохождения звукового давления

Стоит отметить также, что если вторая среда акустически более «мягкая», т.е. Z 1 >Z 2 , то при отражении фаза волны изменяется на 180˚ .

Коэффициент пропускания энергии из одной среды в другую определяется отношением интенсивности волны, проходящей во вторую среду, к интенсивности падающей волны

, (14)

Интерференция и дифракция ультразвуковых волн

Интерференция звука - неравномерность пространственного распределения амплитуды результирующей звуковой волны в зависимости от соотношения между фазами волн, складывающихся в той или иной точке пространства. При сложении гармонических волн одинаковой частоты результирующее пространственное распределение амплитуд образует не зависящую от времени интерференционную картину, которая соответствует изменению разности фаз составляющих волн при переходе от точки к точке. Для двух интерферирующих волн эта картина на плоскости имеет вид чередующихся полос усиления и ослабления амплитуды величины, характеризующей звуковое поле (например, звукового давления). Для двух плоских волн полосы прямолинейны с амплитудой, меняющейся поперёк полос соответственно изменению разности фаз. Важный частный случай интерференции - сложение плоской волны с её отражением от плоской границы; при этом образуется стоячая волна с плоскостями узлов и пучностей, расположенными параллельно границе.

Дифракция звука - отклонение поведения звука от законов геометрической акустики, обусловленное волновой природой звука. Результат дифракции звука - расхождение ультразвуковых пучков при удалении от излучателя или после прохождения через отверстие в экране, загибание звуковых волн в область тени позади препятствий, больших по сравнению с длиной волны, отсутствие тени позади препятствий, малых по сравнению с длиной волны, и т. п. Звуковые поля, создаваемые дифракцией исходной волны на препятствиях, помещённых в среду, на неоднородностях самой среды, а также на неровностях и неоднородностях границ среды, называются рассеянными полями. Для объектов, на которых происходит дифракция звука, больших по сравнению с длиной волны , степень отклонений от геометрической картины зависит от значения волнового параметра

, (15)

  • где D - поперечник объекта (например, поперечник ультразвукового излучателя или препятствия),
  • r - расстояние точки наблюдения от этого объекта

Излучатели ультразвука

Излучатели ультразвука - устройства, применяемые для возбуждения ультразвуковых колебаний и волн в газообразных, жидких и твердых средах. Излучатели ультразвука преобразуют в энергию энергию какого-либо другого вида.

Наибольшее распространение в качестве излучателей ультразвука получили электроакустические преобразователи . В подавляющем большинстве излучателей ультразвука этого типа, а именно в пьезоэлектрических преобразователях , магнитострикционных преобразователях , электродинамических излучателях , электромагнитных и электростатических излучателях, электрическая энергия преобразуется в энергию колебаний какого-либо твердого тела (излучающей пластинки, стержня, диафрагмы и т.п.), которое и излучает в окружающую среду акустические волны. Все перечисленные преобразователи, как правило, линейны, и, следовательно, колебания излучающей системы воспроизводят по форме возбуждающий электрический сигнал; лишь при очень больших амплитудах колебаний вблизи верхней границы динамического диапазона излучателя ультразвука могут возникнуть нелинейные искажения.

В преобразователях, предназначенных для излучения монохроматической волны, используется явление резонанса : они работают на одном из собственных колебаний механической колебательной системы, на частоту которого настраивается генератор электрических колебаний, возбуждающий преобразователь. Электроакустические преобразователи, не обладающие твердотельной излучающей системой, применяются в качестве излучателей ультразвука сравнительно редко; к ним относятся, например, излучатели ультразвука, основанные на электрическом разряде в жидкости или на электрострикции жидкости .

Характеристики излучателя ультразвука

К основным характеристикам излучателей ультразвука относятся их частотный спектр , излучаемая мощность звука , направленность излучения . В случае моночастотного излучения основными характеристиками являются рабочая частота излучателя ультразвука и его частотная полоса , границы которой определяются падением излучаемой мощности в два раза по сравнению с её значением на частоте максимального излучения. Для резонансных электроакустических преобразователей рабочей частотой является собственная частота f 0 преобразователя, а ширина полосы Δf определяется его добротностью Q.

Излучатели ультразвука (электроакустические преобразователи) характеризуются чувствительностью, электроакустическим коэффициентом полезного действия и собственным электрическим импедансом.

Чувствительность излучателя ультразвука - отношение звукового давления в максимуме характеристики направленности на определённом расстоянии от излучателя (чаще всего на расстоянии 1 м) к электрическому напряжению на нём или к протекающему в нём току. Эта характеристика применяется к излучателям ультразвука, используемым в системах звуковой сигнализации, в гидролокации и в других подобных устройствах. Для излучателей технологического назначения, применяемых, например, при ультразвуковых очистке, коагуляции, воздействии на химические процессы, основной характеристикой является мощность. Наряду с общей излучаемой мощностью, оцениваемой в Вт, излучатели ультразвука характеризуют удельной мощностью , т. е. средней мощностью, приходящейся на единицу площади излучающей поверхности, или усреднённой интенсивностью излучения в ближнем поле, оцениваемой в Вт/м 2 .

Эффективность электроакустических преобразователей, излучающих акустическую энергию в озвучиваемую среду, характеризуют величиной их электроакустического коэффициента полезного действия , представляющего собой отношение излучаемой акустической мощности к затрачиваемой электрической. В акустоэлектронике для оценки эффективности излучателей ультразвука используют так называемый коэффициент электрических потерь, равный отношению (в дБ) электрической мощности к акустической. Эффективность ультразвуковых инструментов, используемых при ультразвуковой сварке, механической обработке и тому подобное, характеризуют так называемым коэффициентом эффективности, представляющим собой отношение квадрата амплитуды колебательного смещения на рабочем конце концентратора к электрической мощности, потребляемой преобразователем. Иногда для характеристики преобразования энергии в излучателях ультразвука используют эффективный коэффициент электромеханической связи.

Звуковое поле излучателя

Звуковое поле преобразователя делят на две зоны: ближнюю зону и дальнюю зону. Ближняя зона это район прямо перед преобразователем, где амплитуда эха проходит через серию максимумов и минимумов. Ближняя зона заканчивается на последнем максимуме, который располагается на расстоянии N от преобразователя. Известно, что расположение последнего максимума является естественным фокусом преобразователя. Дальняя зона это район находящийся за N, где давление звукового поля постепенно уменьшается до нуля .

Положение последнего максимума N на акустической оси в свою очередь зависит от диаметра и длины волны и для дискового круглого излучателя выражается формулой

, (17)

Однако поскольку D обычно значительно больше , уравнение можно упростить и привести к виду

Характеристики звукового поля определяются конструкцией ультразвукового преобразователя. Следовательно, от его формы зависит распространение звука в исследуемой области и чувствительность датчика.

Применение ультразвука

Многообразные применения ультразвука, при которых используются различные его особенности, можно условно разбить на три направления. связано с получением информации посредством ультразвуковых волн, - с активным воздействием на вещество и - с обработкой и передачей сигналов (направления перечислены в порядке их исторического становления). При каждом конкретном применении используется ультразвук определённого частотного диапазона.

Если в сплошной среде – газах, жидкостях или твердых телах частицы среды окажутся выведенными из положения равновесия, то упругие силы, действующие на них со стороны других частиц, будут возвращать их в положение равновесия. При этом частицы будет совершать колебательное движение. Распространение упругих колебаний в сплошной среде представляет собой волнообразный процесс.
Колебания с частотой от единиц Герц (Гц) до 20 Герц называются инфразвуковыми , при частоте от 20 Гц до 16…20 кГц колебания создают слышимые звуки . Ультразвуковые колебания соответствуют частотам от 16…20 кГц до 10 8 Гц, а колебания с частотой более 10 8 Гц получили название гиперзвуков . На рисунке 1.1 показана логарифмическая шкала частот, выполненная на основе выражения lg 2 f = 1, 2, 3 …, n, где 1, 2, 3 …, n – номера октав.

Рисунок 1.1 - Диапазоны упругих колебаний в материальных средах

Физическая природа упругих колебаний одинакова во всем диапазоне частот. Для понимания природы упругих колебаний рассмотрим их свойства.
Форма волны - это форма волнового фронта, т.е. совокупности точек, обладающих одинаковой фазой. Колебания плоскости создают плоскую звуковую волну, если излучателем служит цилиндр, периодически сжимающийся и расширяющийся по направлению своего радиуса, то возникает цилиндрическая волна. Точечный излучатель, или пульсирующий шарик, размеры которого малы по сравнению с длиной излучаемой волны, воздает сферическую волну.

Звуковые волны подразделяются по типу волн : они могут быть продольными, поперечными, изгибными, крутильными – в зависимости от условий возбуждения и распространения. В жидкостях и газах распространяются только продольные волны, в твердых телах могут возникать также поперечные и другие из перечисленных типов волн. В продольной волне направление колебаний частиц совпадает с направлением распространения волны (Рисунок 1.2, а ), поперечная волна распространяется перпендикулярно направлению колебаний частиц (Рисунок 1.2, б ) .

а) движение частиц среды при распространении продольной волны; б) движение частиц среды при распространении поперечной волны.

Рисунок 1.2 – Движение частиц при распространении волны

Любая волна, как колебание, распространяющееся во времени и в пространстве, может быть охарактеризована частотой , длиной волны и амплитудой (Рисунок 3) . При этом длина волны λ связана с частотой f через скорость распространения волны в данном материале c: λ = c/f .

Рисунок 1.3 - Характеристики колебательного процесса

1.6 Практическое применение низкоэнергетических ультразвуковых колебаний

Область применение УЗ колебаний низкой интенсивности (условно до 1 Вт/см 2) очень обширна и мы поочередно рассмотрим несколько основных применений УЗ колебаний малой интенсивности.
1. УЗ приборы для контроля химических характеристик различных материалов и сред. Все они основаны на изменении скорости УЗ колебаний в среде и позволяют:
- определять концентрацию бинарных смесей;
- плотности растворов;
- степень полимеризации полимеров;
- наличие в растворах примесей, газовых пузырьков;
- определять скорости протекания химических реакций;
- жирность молока, сливок, сметаны;
- дисперсность в гетерогенных системах и др.
Разрешающая способность современных УЗ приборов 0,05 % , точность измерений скорости распространения на образцах длиной 1 м составляет 0,5 -1 м/с (скорость в металле более 5000 м/с). Практически все измерения проводятся методом сравнения с эталоном.
2. Приборы для контроля физико - химических характеристик , основанные на измерении затухания ультразвука. Такие приборы позволяют осуществлять измерение вязкости, измерение плотности, состав, содержание примесей, газов и т.п. Используемые методики также основаны на методах сравнения с эталоном.
3. УЗ расходомеры жидкостей в трубопроводах . Их действие также основано на измерении скорости распространения УЗ колебаний вдоль потока жидкости и против потока. Сравнение двух скоростей позволяет определить скорость потока, а при известном сечении трубопровода расход. Пример одного из расходомеров (№15183 в Госреестре Средств Измерений) представлен на рисунке 1.4.

Рисунок 1.4 – Стационарный ультразвуковой расходомер "АКРОН"

Такой расходомер обеспечивает измерение объемного расхода и суммарного объема (количества) жидкостей, протекающих в напорных трубопроводах систем водоснабжения, канализации и нефтепродуктоснабжения без врезки в действующий трубопровод. Принцип действия расходомера заключается в измерении разности времени прохождения ультразвуковой волны по потоку и против потока контролируемой жидкости, пересчете ее в мгновенное значение расхода с последующим интегрированием.
Погрешность прибора составляет 2 % от верхнего предела измерения. Верхний и нижний пределы измерения устанавливает оператор. Расходомер включает в себя блок датчиков (состоит из двух ультразвуковых датчиков и устройства для их крепления на трубе) и электронный блок, соединенные радиочастотным кабелем длиной до 50 м (стандартно - 10м.). Датчики устанавливаются на прямолинейном участке трубопровода на наружной поверхности, очищенной от грязи, краски и ржавчины. Условие правильной установки датчиков - наличие прямого участка трубы не менее 10 диаметров трубы - перед, и 5 диаметров - после датчиков.
4. Сигнализаторы уровней
Принцип действия основан на локации уровня жидких или сыпучих материалов ультразвуковыми импульсами, проходящими через газовую среду, и на явлении отражения этих импульсов от границы раздела «газ - контролируемая среда». Мерой уровня при этом является время распространения звуковых колебаний от излучателя до контролируемой границы раздела сред и обратно до приемника. Результат измерения выводится на персональный компьютер, где все измерения запоминаются, с последующей возможностью их просмотра и анализа, а также подключения к системе автоматизированного сбора и обработки данных. Уровнемер в составе системы может включать конечные автоматы, насосы и др. устройства при уровне выше максимального и ниже минимального значения, что позволяет автоматизировать технологический процесс. Дополнительно формируется токовый выход (0,5 мА, 0-20 мА) для самопишущих приборов.
Сигнализатор уровня позволяет контролировать температуру среды в резервуарах. Основным форматом выводимых данных является расстояние от вершины резервуара до поверхности, содержащегося в нем вещества. По желанию заказчика, при предоставлении необходимой информации возможна доработка устройства для вывода высоты, массы либо объема вещества в резервуаре.
5. УЗ анализаторы состава газов основаны на использовании зависимости скорости УЗ в смеси газов от скоростей в каждом из составляющих эту смесь газов.
6. Охранные УЗ устройства основаны на измерении различных параметров УЗ полей (амплитуды колебаний при перекрытии пространства между излучателем и приемником, изменении частоты при отражении от движущегося объекта и т.п.).
7. Измерители температуры газов и пожарные сигнализаторы, основанные на изменении скорости распространения при изменении температуры среды или появления дыма.
8. Приборы ультразвукового неразрушающего контроля. Неразрушающий контроль является одним из основных технологических приёмов обеспечения качества материалов и изделий. Не одно изделие не должно эксплуатироваться без проверки. Можно проверку осуществить путем испытаний, но так можно испытать 1- 10 изделий, но нельзя проверить 100% всех изделий, т.к. проверить - это значит испортить всё изделия. Поэтому, проверять необходимо, не разрушая.
Одни из наиболее дешевых, простых и чувствительных является УЗ метод неразрушающего контроля. Главными достоинствами по сравнению с другими методами неразрушающих испытаний являются:

- обнаружение дефектов, находящихся глубоко внутри материала, что стало возможным благодаря улучшенной проникающей способности. Ультразвуковое обследование проводится до глубины нескольких метров. Контролю подвергаются различные изделия, например: длинные стальные стержни, роторные штамповки и т.д.;
- высокая чувствительность при обнаружении чрезвычайно малых дефектов длиной несколько миллиметров;
- точное определение местоположения внутренних дефектов, оценка их размера, характеристика направления, формы и природы;
- достаточность доступа только к одной из сторон изделия;
- контроль процесса электронными средствами, что обеспечивает почти мгновенное выявление дефектов;
- объемное сканирование, что позволяет обследовать объем материала;
- отсутствие требований по мерам предосторожности, связанным со здоровьем;
- портативность оборудования.

1.7 Практическое применение высокоинтенсивных ультразвуковых колебаний

На сегодняшний день основные процессы, реализуемые и интенсифицируемые при помощи высокоэнергетических ультразвуковых колебаний, принято разделять на три основные подгруппы, в зависимости от вида среды, в которой они реализуются (рисунок 1.5) .

Рисунок 1.5 – Применение высокоэнергетических ультразвуковых колебаний

В зависимости от вида среды процессы условно делятся на процессы в жидких, твердых и термопластичных материалах и газообразных (воздушных) средах. В последующих разделах будут более подробно рассмотрены процессы и аппараты для интенсификации процессов в жидких, твердых и термопластичных материалах, газообразных средах .
Далее рассмотрим примеры основных технологий, реализуемых с использованием высокоэнергетических ультразвуковых колебаний.
1. Размерная обработка.

Ультразвуковые колебания применяются для обработки хрупких и особотвердых материалов и металлов.
Основные технологические процессы, интенсифицируемые ультразвуковыми колебаниями это сверление, зенкование, нарезание резьб, волочение проволоки, полировка, шлифовка, сверление отверстий сложной формы. Интенсификация этих технологических процессов происходит благодаря наложению на инструмент ультразвуковых колебаний.
2. УЗ очистка.
Сегодня существует множество способов очистки поверхностей от различных загрязнений. УЗ очистка более быстрая, обеспечивает высокое качество и отмывает труднодоступные участки. При этом обеспечивается замена высокотоксичных, огнеопасных и дорогих растворителей обычной водой.
С помощью высокочастотных ультразвуковых колебаний производится очистка автомобильных карбюраторов и инжекторов за несколько минут.
Причина ускорения очистки в кавитации, особым явлением при котором в жидкости образуются мельчайшие газовые пузырьки. Эти пузырьки лопаются (взрываются) и создают мощные гидропотоки, которые вымывают всю грязь. На этом принципе существуют сегодня стиральные машины и малые установки мойки. Особенности реализации кавитационного процесса и его потенциальные возможности будут рассмотрены отдельно. УЗ очищает металлы от полировочных паст, прокат от окалины, драгоценные камни от полировочных мест. Очистка печатных форм, стирка тканей, мойка ампул. Очистка трубопроводов сложной формы. Кроме очистки, ультразвук способен производить удаление мелких заусенец, полировку.
Ультразвуковое воздействие в жидких средах уничтожает микроорганизмы и поэтому широко используется в медицине и микробиологии.
Возможна и другая реализация УЗ очистки.
- очистка дыма от твердых частиц в воздухе. Для этого также используется ультразвуковое воздействие на туманы и дым. Частицы в УЗ поле начинают активно двигаться, соударяются и слипаются, осаждаются на стенки. Это явление называется ультразвуковой коагуляцией и используется для борьбы с туманом на аэродромах, на дорогах и в морских портах.
3. УЗ сварка.
В настоящее время, с помощью ультразвуковых колебаний высокой интенсивности, производится сварка полимерных термопластичных материалов. Сварка полиэтиленовых тюбиков, коробок, банок обеспечивает отличную герметичность. В отличие от других способов, с помощью ультразвука можно варить загрязненные пластмассы, трубки с жидкостью и т.д. При этом содержимое стерилизуется.
С помощью ультразвуковой сварки производится сварка тончайшей фольги или проволоки к металлической детали. Причем УЗ сварка - является холодной сваркой, поскольку шов формируется при температуре ниже температуры плавления. Таким образом, соединяются сваркой алюминий, тантал, цирконий, ниобий, молибден и т.п.
В настоящее время ультразвуковая сварка нашла наибольшее применение для высокоскоростных процессов упаковки и производства полимерных упаковочных материалов.
4. Пайка и лужение
С помощью высокочастотных ультразвуковых колебаний производится пайка алюминия. С помощью УЗ можно лудить, а затем паять керамику, стекло, что ранее было невозможно. Ферриты, припайка полупроводниковых кристаллов к позолоченным корпусам реализуются сегодня с применением ультразвуковой технологии.
5. Ультразвук в современной химии
В настоящее время, как следует из литературных источников сформировано новое направление в химии - УЗ химия. Изучая химические превращения, происходящие под действием УЗ, ученые установили, что УЗ не только ускоряет окисление, но в некоторых случаях обеспечивают восстанавливающее действие. Таким образом, восстанавливается железо из окислов и солей.
Получены хорошие положительные результаты по интенсификации УЗ следующих химико-технологических процессов:
- электроосаждение, полимеризация, деполимеризация, окисление, восстановление, диспергирование, эмульгирование, коагуляция аэрозолей, гомогенизация, пропитка, растворение, распыление, сушка, горение, дубление и др.
Электроосаждение - осаждающийся металл приобретает мелкокристаллическую структуру, уменьшается пористость. Таким образом, осуществляемо меднение, лужение, серебрение. Процесс идет быстрее и качество покрытия выше, чем в обычных технологиях.
Получение эмульсий: вода и жир, вода и эфирные масла, вода и ртуть. Барьер несмешиваемости преодолевается благодаря УЗ.
Полимеризация (соединение молекул в одну) - степень полимеризации регулируется частотой УЗ.
Диспергирование - получение сверхтонких пигментов для получения красителей.
Сушка - без нагревания биологически активные вещества. В пищевой, фармакологической промышленности.
Распыление жидкостей и расплавов. Интенсификация процессов в распылительных сушках. Получение металлического порошка из расплавов. Эти распылительные устройства исключают вращающие и трущиеся детали.
УЗ усиливает эффективность горения в 20 раз жидких и твердых топлив.
Пропитка. В сотни раз быстрее проходит жидкость через капилляры пропитываемого материала. Используется при производстве рубероида, шпал, цементных плит, текстолита, гетинакса, пропитке древесины модифицированными смолами
6. УЗ в металлургии.
- Известно, что металлы при плавлении поглощают газы алюминия и его сплавы. 80% всех газов в расплавленном металле приходится на долю Н2. Это привод к ухудшению качества металла. Газы удается удалять с помощью УЗ, что позволило в нашей стране создать специальный технологический цикл и широко использовать его при производстве металлов.
- УЗ способствует закалке металлов
- В порошковой металлургии УЗ способствует слипанию частичек изготавливаемого материала. При этом отпадает необходимость в уплотнении большим давлением.
7. УЗ в горном деле.
Применение ультразвука позволяет реализовать следующие технологии:
- Удаление парафина со стенок нефтяных скважин;
- Исключение взрывов метана в шахтах за счет его распыления;
- УЗ обогащение руд (флотационный метод с применением УЗ).
8. УЗ в сельском хозяйстве.
Ультразвуковые колебания благаприятно влияют на семена и зерна перед их посадкой. Так, обработка семян томатов перед посадкой обеспечивает увеличение численности плодов, сокращает время созревания и увеличение количества витаминов.
Обработка УЗ семян дыни и кукурузы приводит к повышению урожайности на 40 %.
При обработке УЗ семян можно обеспечить дезинфекцию и ввести необходи-мые микроэлементы из жидкости
9. Пищевая промышленность.
На практике уже сегодня реализуются следующие технологии:
- Обработка молока для гомогенизации стерилизации;
- Обработка для увеличения сроков хранения и качества молока в заморо-женном виде
- Получение высококачественного порошкового молока;
- Получение эмульсий для хлебопечения;
- Обработка дрожжей на 15 % повышает их бродильную силу;
- Получение ароматических веществ, пюре, извлечение жира из печени;
- Выделение винного камня;
- Экстрагирование растительного и животного сырья;
- Производство духов (6...8 часов вместо года).
10. УЗ в биологии.
- Большие дозы ультразвука убивают микроорганизмы (стафилококки, стрептококки, вирусы);
- Малые интенсивности ультразвукового воздействия способствуют росту колоний микроорганизмов;
11. Влияние на человека.
Ультразвуковое воздействие с интенсивностью до 0,1…0,4 Вт/см носит лечебное воздействие. В Америке лечебным считается воздействие с интенсивностью до 0,8 Вт/см
12. В медицине.
Ультразвуковые скальпели, устройства для внешней и внутренней липосакции, лапороскопические инструменты, ингаляторы, массажеры находят самое широчайшее применение и позволяют лечить различные болезни.
Изложенный далее курс лекций предназначен для предварительного ознакомления студентов, аспирантов, инженеров и технологов различных производств с основами ультразвуковых технологий и призван дать основополагающие знания по теории формирования ультразвуковых колебаний и практике применения УЗ колебаний высокой интенсивности.

C развитием акустики в конце XIX века был обнаружен ультразвук, тогда же начались первые исследования ультразвука, но основы его применения были заложены только в первой трети XX-века.

Ультразвук и его свойства

В природе ультразвук встречается в качестве компонента многих естественных шумов: в шуме ветра, водопада, дождя, морской гальки, перекатываемой прибоем, в грозовых разрядах. Многие млекопитающие, например кошки и собаки, обладают способностью восприятия ультразвука частотой до 100 кГц, а локационные способности летучих мышей, ночных насекомых и морских животных всем хорошо известны.

Ультразвук - механические колебания, находящиеся выше области частот, слышимых человеческим ухом (обычно 20 кГц). Ультразвуковые колебания перемещаются в форме волны, подобно распространению света. Однако в отличие от световых волн, которые могут распространяться в вакууме, ультразвук требует упругую среду такую как газ, жидкость или твердое тело.

Основными параметрами волны являются длина волны, частота и период. Ультразвуковые волны по своей природе не отличаются от волн слышимого диапазона и подчиняются тем же физическим законам. Но, у ультразвука есть специфические особенности, которые определили его широкое применение в науке и технике. Вот основные из них:

  • 1. Малая длина волны. Для самого низкого ультразвукового диапазона длина волны не превышает в большинстве сред нескольких сантиметров. Малая длина волны обуславливает лучевой характер распространения УЗ волн. Вблизи излучателя ультразвук распространяется в виде пучков по размеру близких к размеру излучателя. Попадая на неоднородности в среде, ультразвуковой пучок ведёт себя как световой луч, испытывая отражение, преломление, рассеяние, что позволяет формировать звуковые изображения в оптически непрозрачных средах, используя чисто оптические эффекты (фокусировку, дифракцию и др.).
  • 2. Малый период колебаний, что позволяет излучать ультразвук в виде импульсов и осуществлять в среде точную временную селекцию распространяющихся сигналов.

Возможность получения высоких значений энергии колебаний при малой амплитуде, т.к. энергия колебаний пропорциональна квадрату частоты. Это позволяет создавать УЗ пучки и поля с высоким уровнем энергии, не требуя при этом крупногабаритной аппаратуры.

В ультразвуковом поле развиваются значительные акустические течения. Поэтому воздействие ультразвука на среду порождает специфические эффекты: физические, химические, биологические и медицинские. Такие как кавитация, звукокапиллярный эффект, диспергирование, эмульгирование, дегазация, обеззараживание, локальный нагрев и многие другие.

Потребности морского флота ведущих держав - Англии и Франции, для исследования морских глубин, вызвали интерес многих ученых в области акустики, т.к. это единственный вид сигнала, способный далеко распространяться в воде. Так в 1826 году французский учёный Колладон определил скорость звука в воде. В 1838 году, в США, звук впервые применили для определения профиля морского дна с целью прокладки телеграфного кабеля. Результаты опыта оказались неутешительными. Звук колокола, давал слишком слабое эхо, почти не слышное среди других звуков моря. Надо было уходить в область более высоких частот, позволяющих создавать направленные звуковые пучки.

Первый генератор ультразвука сделал в 1883 году англичанин Фрэнсис Гальтон. Ультразвук создавался подобно свисту на острие ножа, если на него дуть. Роль такого острия в свистке Гальтона играл цилиндр с острыми краями. Воздух или другой газ, выходящий под давлением через кольцевое сопло, диаметром таким же, как и кромка цилиндра, набегал на кромку, и возникали высокочастотные колебания. Продувая свисток водородом, удалось получить колебания до 170 кГц.

В 1880 году Пьер и Жак Кюри сделали решающее для ультразвуковой техники открытие. Братья Кюри заметили, что при оказании давления на кристаллы кварца генерируется электрический заряд, прямо пропорциональный прикладываемой к кристаллу силе. Это явление было названо "пьезоэлектричество" от греческого слова, означающего "нажать". Кроме того, они продемонстрировали обратный пьезоэлектрический эффект, который проявлялся тогда, когда быстро изменяющийся электрический потенциал применялся к кристаллу, вызывая его вибрацию. Отныне появилась техническая возможность изготовления малогабаритных излучателей и приёмников ультразвука.

Гибель «Титаника» от столкновения с айсбергом, необходимость борьбы с новым оружием - подводными лодками требовали быстрого развития ультразвуковой гидроакустики. В 1914 году, французский физик Поль Ланжевен совместно с талантливым русским учёным-эмигрантом - Константином Васильевичем Шиловским впервые разработали гидролокатор, состоящий из излучателя ультразвука и гидрофона - приёмника УЗ колебаний, основанный на пьезоэффекте. Гидролокатор Ланжевена - Шиловского, был первым ультразвуковым устройством , применявшимся на практике. Тогда же российский ученый С.Я.Соколов разработал основы ультразвуковой дефектоскопии в промышленности. В 1937 году немецкий врач-психиатр Карл Дуссик, вместе с братом Фридрихом, физиком, впервые применили ультразвук для обнаружения опухолей головного мозга, но результаты, полученные ими, оказались недостоверными. В медицинской практике ультразвук впервые стал применяться только с 50-х годов XX-го века в США.

21-й век - век радиоэлектроники, атома, покорения космоса и ультразвука. Сравнительно молода в наши дни наука об ультразвуке. В конце 19 века П. Н. Лебедев, русский ученый-физиолог, провел первые его исследования. После этого ультразвуком начали заниматься многие выдающиеся ученые.

Что такое ультразвук?

Ультразвук - это распространяющееся волнообразно которое совершают частицы среды. Он имеет свои особенности, по которым отличается от звуков слышимого диапазона. Сравнительно легко в ультразвуковом диапазоне получить направленное излучение. К тому же он хорошо фокусируется, и в результате этого повышается интенсивность совершаемых колебаний. При распространении в твердых телах, жидкостях и газах ультразвук рождает интересные явления, нашедшие практическое применение во многих областях техники и науки. Вот что такое ультразвук, роль которого в различных сферах жизни сегодня очень велика.

Роль ультразвука в науке и практике

Ультразвук в последние годы стал играть в научных исследованиях все большую роль. Были успешно проведены экспериментальные и теоретические изыскания в области акустических течений и ультразвуковой кавитации, что позволило ученым разработать технологические процессы, которые протекают при воздействии в жидкой фазе ультразвука. Он является мощным методом исследования разнообразных явлений и в такой области знания, как физика. Ультразвук применяется, например, в физике полупроводников и твердого тела. Сегодня формируется отдельное направление химии, получившее название "ультразвуковая химия". Ее применение позволяет ускорить множество химико-технологических процессов. Зародилась также молекулярная акустика - новый раздел акустики, который изучает молекулярное взаимодействие с веществом Появились новые сферы применения ультразвука: голография, интроскопия, акустоэлектроника, ультразвуковая фазомерия, квантовая акустика.

Помимо экспериментальных и теоретических работ в этой области, сегодня было выполнено множество практических. Разработаны специальные и универсальные ультразвуковые станки, установки, которые работают под повышенным статическим давлением и др. Внедрены в производство ультразвуковые автоматические установки, включенные в поточные линии, что позволяет существенно повысить производительность труда.

Подробнее об ультразвуке

Расскажем подробнее о том, что такое ультразвук. Мы уже говорили о том, что это упругие волны и ультразвука составляет более 15-20 кГц. Субъективными свойствами нашего слуха определяется нижняя граница ультразвуковых частот, которая отделяет ее от частоты слышимого звука. Эта граница, таким образом, является условной, и каждый из нас по-разному определяет, что такое ультразвук. Верхняя граница обозначена упругими волнами, их физической природой. Они распространяются только в материальной среде, то есть длина волны должна быть существенно больше, чем длина свободного пробега имеющихся в газе молекул или же межатомных расстояний в твердых телах и жидкостях. При нормальном давлении в газах верхняя граница частот УЗ - 10 9 Гц, а твердых телах и жидкостях - 10 12 -10 13 Гц.

Источники ультразвука

Ультразвук в природе встречается и как компонент множества естественных шумов (водопада, ветра, дождя, гальки, перекатываемой прибоем, а также в сопровождающих разряды грозы звуках и т. д.), и как неотъемлемая часть животного мира. Им некоторые виды животных пользуются для ориентировки в пространстве, обнаружения препятствий. Известно, кроме того, что ультразвук в природе используют дельфины (в основном частоты от 80 до 100 кГц). Очень большой при этом может быть мощность излучаемых ими локационных сигналов. Известно, что дельфины способны обнаруживать находящиеся на расстоянии до километра от них.

Излучатели (источники) ультразвука делятся на 2 большие группы. Первая - это генераторы, в которых колебания возбуждаются из-за наличия в них препятствий, установленных на пути движения постоянного потока - струи жидкости или газа. Вторая группа, в которую можно объединить источники ультразвука, - электроакустические преобразователи, которые превращают заданные колебания тока или электрического напряжения в механическое колебание, совершаемое твердым телом, излучающее акустические волны в окружающую среду.

Приемники ультразвука

На средних и приемниками ультразвука выступают чаще всего пьезоэлектрического типа электроакустические преобразователи. Они могут воспроизводить форму полученного акустического сигнала, представленную как временная зависимость звукового давления. Приборы могут быть либо широкополосными, либо резонансными - в зависимости от того, для каких условий применения они предназначены. Термические приемники используют для получения характеристик звукового поля, усредненных по времени. Они представляют собой покрытые звукопоглощающим веществом термисторы или термопары. Звуковое давление и интенсивность можно оценивать также оптическими методами, такими как дифракция света на УЗ.

Где применяется ультразвук?

Существует множество сфер его применения, при этом используются различные особенности ультразвука. Эти сферы можно разбить условно на три направления. Первое из них связано с получением посредством УЗ-волн различной информации. Второе направление - активное воздействие его на вещество. А третье связано с передачей и обработкой сигналов. УЗ определенного используется в каждом конкретном случае. Мы расскажем только о некоторых из множества областей, в которых он нашел свое применение.

Очистка с помощью ультразвука

Качество такой очистки нельзя сравнить с другими способами. При полоскании деталей, к примеру, на поверхности их сохраняется до 80% загрязнений, около 55 % - при вибрационной очистке, около 20 % - при ручной, а при ультразвуковой остается не более 0,5 % загрязнений. Детали, которые имеют сложную форму, возможно хорошо очистить лишь с помощью ультразвука. Важным преимуществом его использования является высокая производительность, а также малые затраты физического труда. Более того, можно заменить дорогостоящие и огнеопасные органические растворители дешевыми и безопасными водными растворами, применять жидкий фреон и др.

Серьезная проблема - загрязнение воздуха копотью, дымом, пылью, окислами металлов и т. д. Можно использовать ультразвуковой способ очистки воздуха и газа в газоотводах независимо от влажности среды и температуры. Если УЗ-излучатель поместить в пылеосадочную камеру, в сотни раз увеличится эффективность ее действия. В чем же заключается сущность такой очистки? Беспорядочно движущиеся в воздухе пылинки сильнее и чаще ударяются друг о друга под действием ультразвуковых колебаний. При этом размер их увеличивается за счет того, что они сливаются. Коагуляцией называется процесс укрупнения частиц. Специальными фильтрами улавливаются утяжеленные и укрупненные их скопления.

Механическая обработка хрупких и сверхтвердых материалов

Если ввести между обрабатываемой деталью и рабочей поверхностью инструмента, использующего ультразвук, то частицы абразива при работе излучателя станут воздействовать на поверхность этой детали. При этом разрушается материал и удаляется, подвергаясь обработке под действием множества направленных микроударов. Кинематика обработки складывается из основного движения - резания, то есть совершаемых инструментом продольных колебаний, и вспомогательного - движения подачи, которые осуществляет аппарат.

Ультразвук может проделывать различные работы. Для абразивных зерен источником энергии являются продольные колебания. Они и разрушают обрабатываемый материал. Движение подачи (вспомогательное) может быть круговым, поперечным и продольным. Обработка с помощью ультразвука имеет большую точность. В зависимости от того, какую зернистость имеет абразив, она составляет от 50 до 1 мк. Используя инструменты разной формы, можно делать не только отверстия, но также и сложные вырезы, криволинейные оси, гравировать, шлифовать, изготовлять матрицы и даже сверлить алмаз. Используемые как абразив материалы - корунд, алмаз, кварцевый песок, кремень.

Ультразвук в радиоэлектронике

Ультразвук в технике часто используется в области радиоэлектроники. В этой сфере часто появляется необходимость задержать электрический сигнал относительно какого-то другого. Ученые нашли удачное решение, предложив использовать ультразвуковые линии задержки (сокращенно - ЛЗ). Их действие основано на том, что электрические импульсы преобразуются в ультразвуковые Как же это происходит? Дело в том, что скорость ультразвука существенно меньше, чем та, которую развивают электромагнитные колебания. Импульс напряжения после обратного преобразования в электрические механических колебаний будет задержан на выходе линии относительно импульса входного.

Пьезоэлектрические и магнитострикционные преобразователи используют для преобразования колебаний электрических в механические и обратно. ЛЗ соответственно этому делятся на пьезоэлектрические и магнитострикционные.

Ультразвук в медицине

Различные виды ультразвука применяются для воздействия на живые организмы. В медицинской практике его использование сейчас очень популярно. Оно основывается на эффектах, которые возникают в биологических тканях тогда, когда через них проходит ультразвук. Волны вызывают колебания частиц среды, что создает своеобразный микромассаж тканей. А поглощение ультразвука ведет к их локальному нагреванию. Вместе с тем в биологических средах происходят определенные физико-химические превращения. Эти явления в случае умеренной необратимых повреждений не вызывают. Они только улучшают обмен веществ, а значит и способствуют жизнедеятельности подверженного им организма. Такие явления применяются в УЗ-вой терапии.

Ультразвук в хирургии

Кавитация и сильное нагревание при больших интенсивностях приводят к разрушению тканей. Данный эффект применяется сегодня в хирургии. Фокусный ультразвук используют для хирургических операций, что позволяет осуществлять локальные разрушения в самых глубинных структурах (к примеру, мозга), не повреждая при этом окружающие. В хирургии также используются ультразвуковые инструменты, в которых рабочий конец имеет вид пилки, скальпеля, иглы. Колебания, накладываемые на них, придают новые качества этим приборам. Требуемое усилие значительно снижается, следовательно, уменьшается травматизм операции. К тому же проявляется обезболивающий и кровоостанавливающий эффект. Воздействие тупым инструментом с применением ультразвука используется для разрушения появившихся в организме некоторых видов новообразований.

Воздействие на биологические ткани осуществляется для разрушения микроорганизмов и используется в процессах стерилизации лекарственных средств и медицинских инструментов.

Исследование внутренних органов

В основном речь идет об исследовании брюшной полости. Для этой цели используется специальный может применяться для нахождения и распознавания различных аномалий тканей и анатомических структур. Задача зачастую такова: существует подозрение на наличие злокачественного образования и требуется отличить его от образования доброкачественного или инфекционного.

Ультразвук полезен при исследовании печени и для решения других задач, к которым относится обнаружение непроходимости и заболеваний желчных протоков, а также исследование желчного пузыря для выявления наличия в нем камней и других патологий. Кроме того, может применяться исследование цирроза и других диффузных доброкачественных заболеваний печени.

В области гинекологии, главным образом при анализе яичников и матки, применение ультразвука является в течение длительного времени главным направлением, в котором оно осуществляется особенно успешно. Зачастую здесь также нужна дифференциация доброкачественных и злокачественных образований, что требует обычно наилучшего контрастного и пространственного разрешения. Подобные заключения могут быть полезны и при исследовании множества других внутренних органов.

Применение ультразвука в стоматологии

Ультразвук также нашел свое применение и в стоматологии, где он используется для удаления зубного камня. Он позволяет быстро, бескровно и безболезненно снять налет и камень. При этом слизистая полость рта не травмируется, а "карманы" полости обеззараживаются. Вместо боли пациент испытывает ощущение теплоты.

Ультразвук

Ультразву́к - упругие колебания с частотой за пределом слышимости для человека. Обычно ультразвуковым диапазоном считают частоты выше 18 000 герц.

Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоемкости газов, упругие постоянные твердых тел.

Источники ультразвука

Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц . Такие колебания обычно создают с помощью пьезокерамических преобразователей из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.

Свисток Гальтона

Первый ультразвуковой свисток сделал в 1883 году англичанин Гальтон. Ультразвук здесь создается подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (она составляет около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.

Жидкостный ультразвуковой свисток

Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учеными Коттелем и Гудменом в начале 50-х годов XX века. В нем поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку. Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.

Сирена

Другая разновидность механических источников ультразвука - сирена. Она обладает относительно большой мощностью и применяется в полицейских и пожарных машинах. Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске - роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.

Основная задача при изготовлении сирен - это во-первых- сделать как можно больше отверстий в роторе, во-вторых- достичь большой скорости его вращения. Однако практически выполнить оба эти требования очень трудно.

Ультразвук в природе

Применение ультразвука

Диагностическое применение ультразвука в медицине (УЗИ)

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза .

Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине как лечебное средство.

Ультразвук обладает действием:

  • противовоспалительным, рассасывающим
  • аналгезирующим, спазмолитическим
  • кавитационным усилением проницаемости кожи

Фонофорез - сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно - ионов минералов бишофита . Удобство ультрафонофореза медикаментов и природных веществ:

  • лечебное вещество при введении ультразвуком не разрушается
  • синергизм действия ультразвука и лечебного вещества

Показания к ультрафонофорезу бишофита: остеоартроз , остеохондроз , артриты , бурситы , эпикондилиты, пяточная шпора , состояния после травм опорно-двигательного аппарата; Невриты, нейропатии, радикулиты, невралгии, травмы нервов.

Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела - 0,2-0,4 Вт/см2., в области грудного и поясничного отдела - 0,4-0,6 Вт/см2).

Резка металла с помощью ультразвука

На обычных металлорежущих станках нельзя просверлить в металлической детали узкое отверстие сложной формы, например в виде пятиконечной звезды. С помощью ультразвука это возможно, магнитострикционный вибратор может просверлить отверстие любой формы. Ультразвуковое долото вполне заменяет фрезерный станок. При этом такое долото намного проще фрезерного станка и обрабатывать им металлические детали дешевле и быстрее, чем фрезерным станком.

Ультразвуком можно даже делать винтовую нарезку в металлических деталях, в стекле, в рубине, в алмазе. Обычно резьба сначала делается в мягком металле, а потом уже деталь подвергают закалке. На ультразвуковом станке резьбу можно делать в уже закалённом металле и в самых твёрдых сплавах. То же и со штампами. Обычно штамп закаляют уже после его тщательной отделки. На ультразвуковом станке сложнейшую обработку производит абразив (наждак, корундовый порошок) в поле ультразвуковой волны. Беспрерывно колеблясь в поле ультразвука, частицы твёрдого порошка врезаются в обрабатываемый сплав и вырезают отверстие такой же формы, как и у долота.

Приготовление смесей с помощью ультразвука

Широко применяется ультразвук для приготовления однородных смесей (гомогенизации). Еще в 1927 году американские ученые Лимус и Вуд обнаружили, что если две несмешивающиеся жидкости (например, масло и воду) слить в одну мензурку и подвергнуть облучению ультразвуком, то в мензурке образуется эмульсия, то есть мелкая взвесь масла в воде. Подобные эмульсии играют большую роль в промышленности: это лаки, краски, фармацевтические изделия, косметика.

Применение ультразвука в биологии

Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями. Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

Применение ультразвука для очистки

Применение ультразвука для механической очистки основано на возникновении под его воздействием в жидкости различных нелинейных эффектов. К ним относится кавитация , акустические течения , звуковое давление . Основную роль играет кавитация. Её пузырьки, возникая и схлопываясь вблизи загрязнений, разрушают их. Этот эффект известен как кавитационная эрозия . Используемый для этих целей ультразвук имеет низкую частоты и повышенную мощность.

В лабораторных и производственных условиях для мытья мелких деталей и посуды применяются ультразвуковые ванны заполоненные растворителем (вода, спирт и т. п.). Иногда с их помощью от частиц земли моют даже корнеплоды (картофель, морковь, свекла и др.).

Применение ультразвука в расходометрии

Для контроля расхода и учета воды и теплоносителя с 60-х годов прошлого века в промышленности применяются ультразвуковые расходомеры .

Применение ультразвука в дефектоскопии

Ультразвук хорошо распространяется в некоторых материалах, что позволяет использовать его для ультразвуковой дефектоскопии изделий из этих материалов. В последнее время получает развитие направление ультразвуковой микроскопии, позволяющее исследовать подповерхностный слой материала с хорошей разрешающей способностью.

Ультразвуковая сварка

Ультразвуковая сварка - сварка давлением, осуществляемая при воздействии ультразвуковых колебаний. Такой вид сварки применяется для соединения деталей, нагрев которых затруднен, или при соединении разнородных металлов или металлов с прочными окисными пленками (алюминий, нержавеющие стали, магнитопроводы из пермаллоя и т. п.). Так ультразвуковая сварка применяется при производстве интегральных микросхем.

Применение ультразвука в гальванотехнике

Ультразвук применяют для интенсификации гальванических процессов и улучшения качества покрытий, получаемых электрохимическим способом.