Связь организма с окружающей средой. Биологическая эволюция Осуществление взаимодействия клетки с окружающей средой

Приглашаем Вас ознакомиться с материалами и .

: целлюлозная оболочка, мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком.

Наличие пластид - главная особенность растительной клетки.


Функции клеточной оболочки - определяет форму клетки, защищает от факторов внешней среды.

Плазматическая мембрана - тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.

Цитоплазма - внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.

Эндоплазматическая сеть - сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы - тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белков.

Митохондрии - органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ - богатое энергией органическое вещество.

Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке - главная особенность растительного организма. Хлоропласты - пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты - граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты.

Комплекс Гольджи - система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.

Лизосомы - тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.

Вакуоли - полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

Ядро - главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы - носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро - место синтеза ДНК, и-РНК, р-РНК.



Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.

Наружная, или плазматическая, мембрана - отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки.

Цитоплазма - внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.

Органоиды клетки:

1) эндоплазматическая сеть (ЭПС) - система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ в клетке;

2) рибосомы - тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белка;

3) митохондрии - «силовые станции» клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя образует кристы (складки), увеличивающие ее поверхность. Ферменты на кристах ускоряют реакции окисления органических веществ и синтеза молекул АТФ, богатых энергией;

4) комплекс Гольджи - группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки. На мембранах комплекса осуществляется синтез жиров и углеводов;

5) лизосомы - тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных -.кислот, полисахаридов до моносахаридов. В лизосомах разрушаются отмершие части клетки, целые и клетки.

Клеточные включения - скопления запасных питательных веществ: белков, жиров и углеводов.

Ядро - наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму. Хромосомы - основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками - дочерним организмам. Ядро - место синтеза ДНК, иРНК, рРНК.

Задание:

Поясните, почему органоиды называют специализированными структурами клетки?

Ответ: органоиды называют специализированными структурами клетки, так как они выполняют строго определенные функции, в ядре хранится наследственная информация, в митохондриях синтезируется АТФ, в хлоропластах протекает фотосинтез и т.д.

Если у Вас есть вопросы по цитологии, то Вы можете обратиться за помощью к


Обмен веществ, поступающих внутрь клетки или выделяющихся ею наружу, а также обмен разными сигналами с микро- и макроокружением происходит через наружную мембрану клетки. Как известно, клеточная мембрана является липидным бислоем, в который встроены различные белковые молекулы, выполняющие роль специализированных рецепторов, ионных каналов, устройств, которые активно переносят или удаляют различные химические вещества, межклеточных контактов и т. п. В здоровых клетках эукариотов фосфолипиды в мембране распределены асимметрично: наружная поверхность состоит из сфингомиелина и фосфатидилхолина, внутренняя - из фосфатидилсерина и фосфатидилэтаноламина. Поддержание такой асимметрии нуждается в затратах энергии. Поэтому в случае повреждения клетки, ее инфицирования, энергетического голодания происходит обогащение наружной поверхности мембраны несвойственными ей фосфолипидами, что становится сигналом для других клеток и ферментов о повреждении клетки с соответствующей реакцией на это. Наибольшую роль играет растворимая форма фосфолипазы A2, которая расщепляет арахидоновую кислоту и создает лизоформы из вышеназванных фосфолипидов. Арахидоновая кислота является лимитирующим звеном для создания таких медиаторов воспаления, как эйкозаноиды, а к лизоформам в мембране присоединяются защитные молекулы - пентраксины (С-реактивный протеин (СРП), предшественники амилоидных белков) - с последующей активацией системы комплемента по классическому пути и разрушением клетки.

Строение мембраны способствует сохранению особенностей внутренней среды клетки, ее отличий от внешней среды. Это обеспечивается выборочной проницаемостью клеточной мембраны, существованием в ней механизмов активного транспорта. Их нарушение в результате прямого повреждения, например, тетродотоксином, уабаином, тетраэтиламмонием, или в случае недостаточного энергетического обеспечения соответствующих “насосов” приводит к нарушению электролитного состава клетки, изменению в ней метаболизма, нарушению специфических функций - сокращения, проведения импульса возбуждения и т. п. Нарушение клеточных ионных каналов (кальциевых, натриевых, калиевых и хлорных) у человека также может быть генетически обусловлено мутацией генов, отвечающих за структуру этих каналов. Tак называемые каналопатии служат причиной наследственных болезней нервной, мышечной, пищеварительной систем. Избыточное поступление внутрь клетки воды может привести к ее разрыву - цитолизу - вследствие перфорации мембраны при активации комплемента или атаки цитотоксических лимфоцитов и натуральных киллеров.

В клеточную мембрану встроено множество рецепторов - структур, которые в случае объединения с соответствующими специфическими сигнальными молекулами (лигандами) передают сигнал внутрь клетки. Это происходит с помощью различных регуляторных каскадов, состоящих из ферментативно активных молекул, которые последовательно активируются и в конечном итоге способствуют реализации различных клеточных программ, таких как рост и пролиферация, дифференцировка, подвижность, старение, гибель клетки. Регуляторные каскады достаточно многочисленны, но их количество до конца еще не определено. Система рецепторов и объединенных с ними регуляторных каскадов существует и внутри клетки; они создают определенную регуляторную сеть с пунктами концентрации, распределения и выбора дальнейшего пути сигнала в зависимости от функционального состояния клетки, этапа ее развития, одновременного действия сигналов из других рецепторов. Результатом этого может быть торможение или усиление сигнала, направление его по другому регуляторному пути. Как рецепторный аппарат, так и пути передачи сигнала через регуляторные каскады, например к ядру, могут нарушаться в результате генетического дефекта, который возникает как врожденный порок на уровне организма или вследствие соматической мутации в определенном типе клеток. Указанные механизмы могут повреждаться инфекционными агентами, токсинами, а также изменяться в процессе старения. Завершающим этапом этого может быть нарушение функций клетки, процессов ее пролиферации и дифференцировки.

На поверхности клеток также расположены молекулы, играющие важную роль в процессах межклеточного взаимодействия. К ним могут относиться белки клеточной адгезии, антигены тканевой совместимости, тканевоспецифические, дифференцирующие антигены и т. п. Изменения в составе этих молекул обусловливают нарушение межклеточных взаимодействий и могут стать причиной включения соответствующих механизмов элиминации таких клеток, ведь они представляют определенную опасность для целостности организма как резервуар инфекции, особенно вирусной, или как потенциальные инициаторы опухолевого роста.

Нарушение энергетического обеспечения клетки

Источником энергии в клетке служат продукты питания, после расщепления которых до конечных веществ выделяется энергия. Главным местом образования энергии являются митохондрии, в которых вещества окисляются с помощью ферментов дыхательной цепи. Окисление - основной поставщик энергии, поскольку в результате гликолиза из такого же количества субстратов окисления (глюкозы) высвобождается, по сравнению с окислением, не больше 5 % энергии. Около 60 % энергии, высвобождаемой при окислении, аккумулируется путем окислительного фосфорилирования в макроэргических фосфатах (АТФ, креатинфосфат), остальное ее количество рассеивается в виде тепла. В дальнейшем макроэргические фосфаты используются клеткой для таких процессов, как работа насосов, синтез, деление, движение, секреция и др. Выделяют три механизма, повреждение которых может вызвать нарушение обеспечения клетки энергией: первый - механизм синтеза ферментов энергетического обмена, второй - механизм окислительного фосфорилирования, третий - механизм использования энергии.

Нарушение электронного транспорта в дыхательной цепи митохондрий или разобщение окисления и фосфорилирования АДФ при потере протонного потенциала - движущей силы генерации АТФ, приводит к ослаблению окислительного фосфорилирования таким образом, что большая часть энергии рассеивается в виде тепла и уменьшается количество макроэргических соединений. Разобщение окисления и фосфорилирования под влиянием адреналина используется клетками гомойотермных организмов для повышения теплопродукции при поддержании постоянной температуры тела во время охлаждения или ее повышении при лихорадке. Значительные изменения в структуре митохондрий и энергетическом метаболизме наблюдаются при тиреотоксикозе. Эти изменения вначале обратимы, но после определенной черты становятся необратимыми: митохондрии фрагментируются, распадаются или набухают, теряют кристы, превращаясь в вакуоли, и в конце концов накапливают такие вещества, как гиалин, ферритин, кальций, липофусцин. У больных цингой происходит слияние митохондрий с образованием хондриосфер, возможно, вследствие повреждения мембран пероксидными соединениями. Значительные повреждения митохондрий возникают под действием ионизирующего излучения, в ходе преобразования нормальной клетки в злокачественную.

Митохондрии являются мощным депо ионов кальция, где его концентрация на несколько порядков превышает таковую в цитоплазме. При повреждении митохондрий кальций выходит в цитоплазму, обусловливая активизацию протеиназ с повреждением внутриклеточных структур и нарушением функций соответствующей клетки, например, кальциевые контрактуры или даже “кальциевую смерть” в нейронах. В результате нарушения функциональной способности митохондрий резко увеличивается образование свободнорадикальных пероксидных соединений, которые имеют очень высокую реакционную способность и поэтому повреждают важные компоненты клетки - нуклеиновые кислоты, белки и липиды. Это явление наблюдается при так называемом оксидационном стрессе и может иметь отрицательные последствия для существования клетки. Так, повреждение наружной мембраны митохондрии сопровождается выходом в цитоплазму веществ, содержащихся в межмембранном пространстве, прежде всего цитохрома С и некоторых других БАВ, которые запускают цепные реакции, являющиеся причиной запрограммированной гибели клетки - апоптоза. Повреждая ДНК митохондрий, свободнорадикальные реакции искажают генетическую информацию, необходимую для образования некоторых ферментов дыхательной цепи, которые продуцируются именно в митохондриях. Это приводит к еще большему нарушению окислительных процессов. В целом собственный генетический аппарат митохондрий по сравнению с генетическим аппаратом ядра хуже защищен от вредных влияний, способных изменять закодированную в нем генетическую информацию. Как результат - возникает нарушение функций митохондрий на протяжении жизни, например, в процессе старения, при злокачественной трансформации клетки, а также на фоне наследственных митохондриальных болезней, связанных с мутацией ДНК митохондрий в яйцеклетке. В настоящее время описаны свыше 50 митохондриальных мутаций, вызывающих наследственные дегенеративные болезни нервной и мышечной систем. Они передаются ребенку исключительно от матери, так как митохондрии сперматозоида не входят в состав зиготы и, соответственно, нового организма.

Нарушение сохранения и передачи генетической информации

Ядро клетки содержит большую часть генетической информации и тем самым обеспечивает ее нормальное функционирование. С помощью выборочной экспрессии генов оно координирует работу клетки в интерфазе, сохраняет генетическую информацию, воссоздает и передает генетический материал в процессе деления клеток. В ядре происходят репликация ДНК и транскрипция РНК. Различные патогенные факторы, такие как ультрафиолетовое и ионизирующее излучение, свободнорадикальное окисление, химические вещества, вирусы, способны повреждать ДНК. Подсчитано, что каждая клетка теплокровного животного за 1 сут. теряет более 10 000 оснований. Сюда следует добавить нарушения при копировании во время деления. При сохранении этих повреждений клетка была бы не способна выжить. Защита заключается в существовании мощных систем репарации, таких как ультрафиолетовая эндонуклеаза, система репаративной репликации и рекомбинационного восстановления, которые замещают нарушения ДНК. Генетические дефекты в репаративных системах вызывают развитие болезней, обусловленных повышенной чувствительностью к факторам, повреждающим ДНК. Это пигментная ксеродерма, а также некоторые синдромы ускоренного старения, сопровождающиеся повышенной склонностью к возникновению злокачественных опухолей.

Система регуляции процессов репликации ДНК, транскрипции информационой РНК (иРНК), трансляции генетической информации из нуклеиновых кислот в структуру белков довольно сложная и многоуровневая. Кроме регуляторных каскадов, запускающих действие факгоров транскрипции общим количеством свыше 3000, которые активируют определенные гены, существует еще многоуровневая регуляторная система, опосредованная малыми молекулами РНК (интерферирующие РНК; РНКи). Геном человека, который состоит приблизительно из 3 млрд пуриновых и пиримидиновых оснований, содержит лишь 2 % структурных генов, отвечающих за синтез белков. Остальные обеспечивают синтез регуляторных РНК, которые одновременно с факторами транскрипции активируют или блокируют работу структурных генов на уровне ДНК в хромосомах или влияют на процессы трансляции матричной РНК (мРНК) при образовании молекулы полипептида в цитоплазме. Нарушение генетической информации может происходить как на уровне структурных генов, так и регуляторной части ДНК с соответствующими проявлениями в виде разнообразных наследственных заболеваний.

В последнее время большое внимание привлекают изменения в генетическом материале, которые происходят в процессе индивидуального развития организма и связаны с торможением или активацией определенных участков ДНК и хромосом вследствие их метилирования, ацетилирования и фосфорилирования. Эти изменения сохраняются длительно, иногда - на протяжении всей жизни организма от эмбриогенеза до старости, и получили название эпигеномной наследственности.

Размножению клеток с измененной генетической информацией препятствуют также системы (факторы) контроля митотического цикла. Они взаимодействуют с циклинзависимыми протеинкиназами и их каталитическими субъединицами - циклинами - и блокируют прохождение клеткой полного митотического цикла, останавливая деление на границе между пресинтетической и синтетической фазами (блок G1/S) вплоть до завершения репарации ДНК, а в случае ее невозможности - инициируют запрограммированную смерть клетки. К таким факторам относится ген р53, мутация которого служит причиной потери контроля над пролиферацией трансформированных клеток; она наблюдается почти в 50 % случаев рака у человека. Второй контрольный пункт прохождения митотического цикла находится на границе G2/M. Здесь контролируется правильность распределения хромосомного материала между дочерними клетками в митозе или мейозе с помощью комплекса механизмов, контролирующих клеточное веретено, центр и центромеры (кинетохоры). Неэффективность этих механизмов приводит к нарушению распределения хромосом или их частей, что проявляется отсутствием какой-либо хромосомы в одной из дочерних клеток (анеуплоидия), наличием лишней хромосомы (полиплоидия), отрывом части хромосомы (делеция) и переносом ее на другую хромосому (транслокация). Такие процессы очень часто наблюдаются при размножении злокачественно перерожденных и трансформированных клеток. Если же это происходит во время мейоза с половыми клетками, то приводит или к гибели плода на раннем этапе эмбрионального развития, или к рождению организма с хромосомной болезнью.

Неконтролируемое размножение клеток во время роста опухолей возникает как результат мутации в генах, которые контролируют пролиферацию клеток и получили название онкогенов. Среди более 70 известных в настоящее время онкогенов большая часть относится к компонентам регуляции роста клетки, часть представлена факторами транскрипции, регулирующими активность генов, а также факторами, которые тормозят деление и рост клеток. Еще одним фактором, ограничивающим чрезмерную экспансию (распространение) пролиферирующих клеток, является укорочение концов хромосом - теломер, которые не способны в результате сугубо стерического взаимодействия полностью реплицироваться, поэтому после каждого деления клетки теломеры укорачиваются на определенную часть оснований. Таким образом, пролиферирующие клетки взрослого организма после определенного количества делений (обычно от 20 до 100 в зависимости от вида организма и его возраста) исчерпывают длину теломеры и дальнейшая репликация хромосом прекращается. Это явление не возникает в сперматозогенном эпителии, энтероцитах и эмбриональных клетках благодаря наличию фермента теломеразы, восстанавливающей длину теломер после каждого деления. В большинстве клеток взрослых организмов теломераза заблокирована, но, к сожалению, она активирована в клетках опухолей.

Связь между ядром и цитоплазмой, транспорт веществ в обоих направлениях осуществляются через поры в ядерной мембране при участии специальных транспортных систем с потреблением энергии. Таким образом транспортируются к ядру энергетические и пластические вещества, сигнальные молекулы (факторы транскрипции). Обратный поток выносит в цитоплазму молекулы иРНК и транспортной РНК (тРНК), рибосомы, необходимые для синтеза белка в клетке. Этот же путь транспорта веществ присущ и вирусам, в частности таким, как ВИЧ. Они переносят свой генетический материал в ядро клетки-хозяина с дальнейшим включением его в геном хозяина и переносом новообразованной вирусной РНК в цитоплазму для дальнейшего синтеза белков новых вирусных частичек.

Нарушение процессов синтеза

Процессы синтеза белков происходят в цистернах эндоплазматической сети, тесно связанных с порами в ядерной мембране, через которые в эндоплазматическую сеть поступают рибосомы, тРНК и иРНК. Здесь осуществляется синтез полипептидных цепочек, которые в дальнейшем приобретают свой окончательный вид в агранулярной эндоплазматической сети и пластинчатом комплексе (комплексе Гольджи), где подвергаются пос трансляционной модификации и соединению с молекулами углеводов и липидов. Новообразованные белковые молекулы не остаются на месте синтеза, а с помощью сложного регулируемого процесса, который носит название протеинкинезиса , активно переносятся к той изолированной части клетки, где они будут выполнять предназначенную им функцию. При этом очень важным этапом является структурирование перенесенной молекулы в соответствующую пространственную конфигурацию, способную выполнять присущую ей функцию. Такое структурирование происходит с помощью специальных ферментов или на матрице специализированных белковых молекул - шаперонов, которые помогают белковой молекуле, новообразованной или измененной вследствие внешнего влияния, приобрести правильную трехмерную структуру. В случае неблагоприятного влияния на клетку, когда возникает вероятность нарушения структуры белковых молекул (например, при повышении температуры тела, инфекционном процессе, интоксикации) концентрация шаперонов в клетке резко увеличивается. Поэтому такие молекулы получили еще название стресс-белков , или белков теплового шока . Нарушение структурирования белковой молекулы приводит к образованию химически инертных конгломератов, которые откладываются в клетке или вне ее при амилоидозе, болезни Альцгеймера и др. Иногда матрицей может служить предварительно структурированная аналогичная молекула, и в данном случае, если первичное структурирование произошло неправильно, все последующие молекулы также будут дефектными. Эта ситуация возникает при так называемых прионовых болезнях (скрепи у овец, бешенство коров, куру, болезнь Крейтцфельдта-Якоба у человека), когда дефект одного из мембранных белков нервной клетки обусловливает последующее скопление инертных масс внутри клетки и нарушение ее жизнедеятельности.

Нарушение процессов синтеза в клетке может происходить на различных его этапах: транскрипция РНК в ядре, трансляция полипептидов в рибосомах, посттрансляционная модификация, гиперметилирование и гликозилирование бежовой молекулы, транспорт и распределение белков в клетке и выведение их наружу. При этом можно наблюдать увеличение или уменьшение количества рибосом, распад полирибосом, расширение цистерн гранулярной эндоплазматической сети, потерю ею рибосом, образование везикул и вакуолей. Так, при отравлении бледной поганкой повреждается фермент РНК-полимераза, что нарушает транскрипцию. Дифтерийный токсин, инактивируя фактор элонгации, нарушает процессы трансляции, обусловливая повреждение миокарда. Причиной нарушения синтеза некоторых специфических белковых молекул могут служить инфекционные агенты. Например, герпесвирусы тормозят синтез и экспрессию молекул антигенов ГКГС, что позволяет им частично избежать иммунного контроля, бациллы чумы - синтез медиаторов острого воспаления. Появление необычных белков может приостанавливать их дальнейший распад и приводить к накоплению инертного или даже токсичного материала. Этому в определенной мере может способствовать и нарушение процессов распада.

Нарушение процессов распада

Одновременно с синтезом белка в клетке непрерывно происходит его распад. В нормальных условиях это имеет важное регуляторное и формообразующее значение, например, во время активации неактивных форм ферментов, белковых гормонов, белков митотического цикла. Нормальные рост и развитие клетки нуждаются в тонко контролируемом балансе между синтезом и деградацией белков и органелл. Однако в процессе синтеза белков вследствие ошибок в работе синтезирующего аппарата, аномального структурирования белковой молекулы, ее повреждения химическими и бактериальными агентами постоянно образуется довольно большое количество дефектных молекул. По некоторым оценкам, их доля составляет около трети всех синтезированных белков.

Клетки млекопитающих имеют несколько главных путей разрушения белков: через лизосомальные протеазы (пентидгидролазы), кальцийзависимые протеиназы (эндопептидазы) и систему протеасом. Кроме того, есть еще и специализированные протеиназы, например каспазы. Основной органеллой, в которой происходит деградация веществ в эукариотических клетках, является лизосома, содержащая многочисленные гидролитические ферменты. Вследствие процессов эндоцитоза и различных типов аутофагии в лизосомах и фаголизосомах разрушаются как дефектные белковые молекулы, так и целые органеллы: поврежденные митохондрии, участки плазматической мембраны, некоторые экстрацеллюлярные белки, содержимое секреторных гранул.

Важным механизмом деградации белков является протеасома - мультиката-литическая протеиназная структура сложного строения, локализирующаяся в цитозоле, ядре, эндоплазматической сети и на мембране клетки. Эта ферментная система отвечает за разрушение поврежденных белков, а также здоровых белков, которые должны быть удалены для нормального функционирования клетки. При этом белки, подлежащие разрушению, предварительно соединяются со специфическим полипептидом убиквитином. Однако частично в протеасомах могуг разрушаться и неубиквитированные белки. Распад белковой молекулы в протеасомах до коротких полипептидов (процессинг) с последующей их презентацией совместно с молекулами ГКГС I типа является важным звеном в осуществлении иммунного контроля антигенного гомеостаза организма. При ослаблении функции протеасом происходит аккумуляция поврежденных и ненужных белков, сопровождающая старение клетки. Нарушение деградации циклинзависимых белков приводит к нарушению клеточного деления, деградации секреторных белков - к развитию цистофиброза. И наоборот, повышение функции протеасом сопровождает истощение организма (СПИД, рак).

При генетически обусловленных нарушениях деградации белков организм нежизнеспособен и гибнет на ранних стадиях эмбриогенеза. Если же нарушается распад жиров или углеводов, то возникают болезни накопления (тезаурисмозы). При этом внутри клетки накапливается избыточное количество определенных веществ или продуктов их неполного распада - липидов, полисахаридов, что существенно повреждает функцию клетки. Чаще всего это наблюдается в эпите-лиоцитах печени (гепатоцитах), нейронах, фибробластах и макрофагоцитах.

Приобретенные нарушения процессов распада веществ могут возникать как результат патологических процессов (например, белковой, жировой, углеводной и пигментной дистрофии) и сопровождаться образованием непривычных веществ. Нарушения в системе лизосомного протеолиза приводят к снижению адаптации при голодании или повышенной нагрузке, к возникновению некоторых эндокринных дисфункций - снижению уровня инсулина, тиреоглобулина, цитокинов и их рецепторов. Нарушения деградации белков замедляют скорость заживления ран, обусловливают развитие атеросклероза, влияют на иммунный ответ. При гипоксии, изменении внутриклеточного pH, лучевом поражении, характеризующихся усиленной пероксидацией мембранных липидов, а также под влиянием лизосомотропных веществ - эндотоксинов бактерий, метаболитов токсических грибов (спорофузарин), кристаллов оксида кремния - изменяется стабильность мембраны лизосом, в цитоплазму высвобождаются акгивированные лизосомаль-ные ферменты, что вызывает разрушение структур клетки и ее гибель.

КЛЕТКА

ЭПИТЕЛИАЛЬНАЯ ТКАНЬ.

ВИДЫ ТКАНЕЙ.

СТРОЕНИЕ И СВОЙСТВА КЛЕТКИ.

ЛЕКЦИЯ №2.

1. Строение и основные свойства клетки.

2. Понятие о тканях. Виды тканей.

3. Строениие и функции эпителиальной ткани.

4. Виды эпителия.

Цель:знать строение и свойства клетки, виды тканей. Представлять классификацию эпителия и местопоожение его в организме. Уметь отличать эпителиальную тканьь по морфологическим признакам от других тканей.

1. Клетка – это элементарная живая система, основа строения, развития и жизнедеятельности всех животных и растений. Наука о клетке – цитология (греч. сytos – клетка, logos – наука). Зоолог Т.Шванн в 1839 г. впервые сформулировал клеточную теорию: клетка представляет основную единицу строения всех живых организмов, клетки животных и растений сходны по своему строению, вне клетки нет жизни. Клетки существуют как самостоятельные организмы (простейшие, бактерии), и в состааве многоклеточных организмов, в которых имеютсяя половые клетки, служащие для размножения, и клетки тела (соматические), различные по строению и функциям (нервные, костные, секреторнные и т.д.).Размеры клеток человека находятся в диапазоне от 7 мкм (лимфоциты) до 200-500 мкм (женская яйцеклетка, гладкие миоциты).В состав любой клетки входят белки, жиры, углеводы, нуклеиновые кислоты, АТФ, минеральные соли и вода. Из неорганических веществ в клетке содержится больше всего воды (70-80%), из органических – белков (10-20%).Основными частями клетки являются: ядро, цитоплазма, клеточная оболочка (цитолемма).

ЯДРО ЦИТОПЛАЗМА ЦИТОЛЕММА

Нуклеоплазма - гиалоплазма

1-2 ядрышка - органеллы

Хроматин (эндоплазматическая сеть

комплекс КТольджи

клеточный центр

митохондрии

лизосомы

специального назначения)

Включения.

Ядро клетки находится в цитоплазме и отграничено от нее ядерной

оболочкой - нуклеолеммой. Оно служит местом сосредоточения генов,

основным химическим веществом которых является ДНК. Ядро регулирует формообразовательные процессы клетки и все ее жизненные отправления. Нуклеоплазма обеспечивает взаимодействие различных ядерных структур, ядрышки участвуют в синтезе клеточных белков и некоторых ферментов, хроматин содержит хромосомы с генами – носителями наследственности.

Гиалоплазма (греч. hyalos - стекло) - основная плазма цитоплазмы,

является истинной внутренней средой клетки. Она объединяет все клеточные ультраструктуры (ядро, органеллы, включения) и обеспечивает химическое взаимодействие их друг с другом.

Органеллы (органоиды) - это постоянные ультраструктуры цитоплазмы, выполняющие в клетке определенные функции. К ним относятся:


1) эндоплазматическая сеть - система разветвленных каналов и полостей, образованная двойными мембранами, связанными с клеточной оболочкой. На стенках каналов имеются мельчайшие тельца - рибосомы, являющиеся центрами синтеза белка;

2) комплекс К.Гольджи, или внутренний сетчатый аппарат, - имеет сетки и содержит вакуоли разной величины (лат. vacuum - пустой), участвует в выделительной функции клеток и в образовании лизосом;

3) клеточный центр - цитоцентр состоит из шаровидного плотного тела- центросферы, внутри которого лежат 2 плотных тельца – центриоли, связанные между собой перемычкой. Располагается ближе к ядру, принимает участие в делении клетки, обеспечивая равномерное распределение хромосом между дочерними клетками;

4) митохондрии (греч. mitos - нить, chondros - зерно) имеют вид зернышек,палочек, нитей. В них осуществляется синтез АТФ.

5) лизосомы - пузырьки, заполненные ферментами, которые,регулируют

обменные процессы в клетке и обладают пищеварительной (фагоцитарной) активностью.

6) органеллы специального назначения: миофибриллы, нейрофибриллы, тонофибриллы, реснички, ворсинки, жгутики, выполняющие специфическую функцию клетки.

Цитоплазматические включения - это непостоянные образования в виде

гранул, капель и вакуолей, содержащих белки, жиры, углеводы, пигмент.

Клеточная оболочка - цитолемма, или плазмолемма, покрывает клетку с поверхности и отделяет ее от окружающей среды. Является полупроницаемой и регулирует поступление веществ в клетку и выход их из нее.

Межклеточное вещество находится между клетками. В одних тканях оно жидкое (например, в крови), а в других состоит из аморфного (бесструктурного) вещества.

Любая живая клетка обладает следующими основными свойствами:

1) обменом веществ, или метаболизмом (главное жизненное свойство),

2) чувствительностью (раздражимостью);

3) способностью к размножению (самовоспроизведению);

4) способностью к росту, т.е. увеличению размеров и объема клеточных структур и самой клетки;

5) способностью к развитию, т.е. приобретению клеткой специфических функций;

6) секрецией, т.е. выделением различных веществ;

7) передвижением (лейкоциты, гистиоциты, сперматозоиды)

8) фагоцитозом (лейкоциты, макрофаги и др.).

2. Ткань - это система клеток, сходная по происхождений), строению и функциям. В состав тканей входят также тканевая жидкость и продукты жизнедеятельности клеток. Учение о тканях называется гистологией (греч. histos - ткань, logos - учение, наука).В соответствии с особенностями строения, функции и развития различают следующие виды тканей:

1) эпителиальную, или покровную;

2) соединительную (ткани внутренней среды);

3) мышечную;

4) нервную.

Особое место в организме человека занимает кровь и лимфа - жидкая ткань, выполняющая дыхательную, трофическую и защитную функции.

В организме все ткани тесно связаны между собой морфологически

и функционально. Морфологическая связь обусловлена тем, что различ-

ные ткани входят в состав одних и тех же органов. Функциональная связь

проявляется в том, что деятельность разных тканей, входящих в состав

органов, согласована.

Клеточные и неклеточные элементы тканей в процессе жизне-

деятельности изнашиваются и отмирают (физиологическая дегенерация)

и восстанавливаются (физиологическая регенерация). При повреждении

тканей происходит также их восстановление (репаративная регенерация).

Однако не у всех тканей этот процесс протекает одинаково. Эпителиаль-

ная, соединительная, гладкая мышечная ткань и клетки крови регенери-

руют хорошо. Поперечнополосатая мышечная ткань восстанавливается

лишь при определенных условиях. В нервной ткани восстанавливаются

только нервные волокна. Деление нервных клеток в организме взрослого

человека не установлено.

3. Эпителиальная ткань (эпителий) - это ткань, покрывающая поверхность кожи, роговицу глаза, а также выстилающая все полости организма, внутреннюю поверхность полых органов пищеварительной, дыхательной, мочеполовой систем, входит в состав большинства желез организма. В связи с этим различают покровный и железистый эпителий.

Покровный эпителий, являясь пограничной тканью, осуществляет:

1) защитную функцию, предохраняя подлежащие ткани от различных внешних воздействий: химических, механических, инфекционных.

2) обмен веществ организма с окружающей средой, выполняя функции газообмена в легких, всасывания в тонком кишечнике, выделения продуктов обмена (метаболитов);

3) создание условий для подвижности внутренних органов в серозных полостях: сердца, легких, кишечника и т.д.

Железистый эпителий осуществляет секреторную функцию, т.е.образует и выделяет специфические продукты - секреты, которые используются в процессах, протекающих в организме.

Морфологически эпителиальная ткань отличается от других тканей организма следующими признаками:

1) она всегда занимает пограничное положение, поскольку располагается на границе внешней и внутренней сред организма;

2) она представляет собой пласты клеток - эпителиоцитов, которые имеют неодинаковую форму и строение в различных видах эпителия;

3) между клетками эпителия нет межклеточного вещества, и клетки

связаны друг с другом с помощью различных контактов.

4) клетки эпителия расположены на базальной мембране (пластинке толщиной около 1 мкм, которой он отделен от подлежащей соединительной ткани. Базальная мембрана состоит из аморфного вещества и фибриллярных структур;

5) клетки эпителия обладают полярностью, т.е. базальные и верхушечные отделы клеток имеют разное строение;"

6) эпителий не содержит кровеносных сосудов, поэтому питание клеток

осуществляется путем диффузии питательных веществ через базальную мембрану из подлежащих тканей;"

7) наличие тонофибрилл - нитчатых структур, придающих прочность эпителиальным клеткам.

4. Существует несколько классификаций эпителия, в основу которых положены различные признаки: происхождение, строение, функции.Из них наибольшее распространение получила морфологическая классификация, учитывающая отношение клеток к базальной мембране и их форму на свободной апикальной (лат. apex - вершина) части эпителиального пласта. В этой классификации отражено строение эпителия, зависящее от его функции.

Однослойный плоский эпителий представлен в организме эндотелием и мезотелием. Эндотелий выстилает кровеносные, лимфатические сосуды, камеры сердца. Мезотелий покрывает серозные оболочки полости брюшины, плевры и перикарда. Однослойный кубический эпителий выстилает часть почечных канальцев, протоки многих желез и мелкие бронхи. Однослойный призматический эпителий имеет слизистая оболочка желудка, тонкого и толстого кишечника, матки, маточных труб, желчного пузыря, ряда протоков печени, поджелудочной железы, части

канальцев почки. В органах, где происходят процессы всасывания, эпителиальные клетки имеют всасывающую каемку, состоящую из большого числа микроворсинок. Однослойный многорядный мерцательный эпителий выстилает воздухоносные пути: полость носа, носоглотку, гортань, трахею, бронхи и др.

Многослойный плоский неороговевающий эпителий покрывает снаружи роговицу глаза и слизистую оболочку полости рта и пищевода.Многослойный плоский ороговевающий эпителий образует поверхностный слой кржи и называется эпидермисом. Переходный эпителий типичен для мочеотводящих органов: лоханок почек, мочеточников, мочевого пузыря, стенки которых подвержены значительному растяжению при наполнении мочой.

Экзокринные железы выделяют свой секрет в полости внутренних органов или на поверхность тела. Они, как правило, имеют выводные протоки. Эндокринные железы не имеют протоков и выделяют секрет (гормоны) в кровь или лимфу.

Третий этап эволюции - появление клетки.
Молекулы белков и нуклеиновых кислот (ДНК и РНК) образуют биологическую клетку, наименьшую единицу живого. Биологические клетки являются "строительными кирпичиками" всех живых организмов и содержат в себе все материальные коды развития.
Долгое время ученые считали устройство клетки предельно простым. Советский энциклопедический словарь трактует понятие клетки так: "Клетка - элементарная живая система, основа строения и жизнедеятельности всех животных и растений". Следует отметить, что термин "элементарная" ни в коем случае не означает "простейшая" Наоборот, клетка- уникальное фрактальное творение Бога, поражающее своей сложностью и в то же время исключительной слаженностью работы всех ее элементов.
Когда с помощью электронного микроскопа удалось заглянуть внутрь, то оказалось, что устройство простейшей клетки так же сложно и непонятно, как сама Вселенная. Сегодня уже установлено, что " Клетка - это особая материя Вселенной, особая материя Космоса". Одна единственная клетка содержит сведения, которые можно уложить лишь в несколько десятков тысяч томов Большой советской энциклопедии. Т.е. клетка, кроме всего прочего, - огромный "биорезервуар" информации".
Автор современной теории молекулярной эволюции Манфред Эйген пишет: "Для того, чтобы белковая молекула образовалась случайно, природе пришлось бы проделать примерно 10130 проб и затратить на это такое число молекул, которого хватило бы на 1027 Вселенных. Если же белок строился разумно, то есть так, что обоснованность каждого хода могла быть проверена каким- то механизмом селекции, то на это потребовалось всего около 2000 попыток. Мы приходим к парадоксальному выводу: программа построения "первобытной живой клетки" закодирована где-то на уровне элементарных частиц" .
Да и как может быть иначе. Каждая клетка, обладая ДНК, наделена сознанием, осознает себя и другие клетки, и находится в контакте со Вселенной, являясь, по сути, ее частью. И хотя количество и разнообразие клеток в организме человека потрясает (около 70 триллионов), все они самоподобны, как самоподобны все процессы, происходящие в клетках. По выражению немецкого ученого Роланда Глазера, конструкция биологических клеток "очень хорошо продумана". Кем хорошо продумана?
Ответ прост: белки, нуклеиновые кислоты, живые клетки и все биологические системы являются продуктом творческой деятельности интеллектуального Творца.

Что интересно: на атомном уровне различий между химическим составом органического и неорганического мира нет. Иными словами, на уровне атома клетка создана из тех же элементов, что и неживая природа. Различия обнаруживаются на молекулярном уровне. В живых телах наряду с неорганическими веществами и водой находятся еще белки, углеводы, жиры, нуклеиновые кислоты, фермент АТФ- синтаза и другие низкомолекулярные органические соединения.
К сегодняшнему дню клетку с целью изучения буквально разобрали на атомы. Однако создать хоть одну живую клетку так и не удаётся, ибо создать клетку это значит создать частицу живой Вселенной. Академик В.П. Казначеев считает, что "клетка - это космопланетарный организм… Клетки человека - это определенные системы эфироторсионных биоколлайдеров. В этих биоколлайдерах происходят неизвестные нам процессы, идет материализация космических форм потоков, их космопревращение и за счет этого частицы матерализуются" .
Вода.
Почти 80% массы клетки составляет вода. По утверждению доктора биологических наук С. Зенина вода, благодаря своей кластерной структуре, является информационной матрицей для управления биохимическими процессами. Кроме того, именно вода является той первичной "мишенью", с которой взаимодействуют колебания звуковой частоты. Упорядоченность клеточной воды настолько высока (близка к упорядоченности кристалла), что ее называют жидким кристаллом.
Белки.
Огромную роль в биологической жизни играют белки. В клетке содержатся несколько тысяч белков, присущих только данному виду клетки (исключение составляют стволовые клетки). Способность синтезировать именно свои белки передается по наследству от клетки к клетке и сохраняется в течение всей жизни. В процессе жизнедеятельности клетки белки постепенно изменяют свою структуру, их функция нарушается. Эти отработавшие белки удаляются из клетки и заменяются новыми, благодаря чему жизнедеятельность клетки сохраняется.
Отметим, прежде всего, строительную функцию белков, ибо именно они являются тем строительным материалом, из которого состоят мембраны клеток и клеточных органоидов, стенки кровеносных сосудов, сухожилия, хрящи и т.д.
Чрезвычайно интересна сигнальная функция белков. Оказывается, белки способны служить сигнальными веществами, передавая сигналы между тканями, клетками или организмами. Сигнальную функцию выполняют белки-гормоны. Клетки могут взаимодействовать друг с другом на расстоянии с помощью сигнальных белков, передаваемых через межклеточное вещество.
Белкам присуща также двигательная функция. Все виды движения, к которым способны клетки, например, сокращение мышц, выполняют особые сократительные белки. Белки выполняют также транспортную функцию. Они способны присоединять различные вещества и переносить их из одного места клетки в другое. Например, белок крови гемоглобин присоединяет кислород и разносит его ко всем тканям и органам тела. Кроме того, белкам присуща и защитная функция. При введении чужеродных белков или клеток в организм в нем происходит выработка особых белков, которые связывают и обезвреживают чужеродные клетки и вещества. Ну и наконец, энергетическая функция белков заключается в том, что при полном расщеплении 1г белка освобождается энергия в количестве 17, 6 кДж.

Строение клетки.
Клетка состоит из трех неразрывно связанных между собой частей: оболочки, цитоплазмы и ядра, причем строение и функция ядра в разные периоды жизни клетки различны. Ибо жизнь клетки включает в себя два периода: деление, в результате которого образуются две дочерние клетки, и период между делениями, который называется интерфазой.
Оболочка клетки осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками. Она состоит из наружного слоя и расположенной под ним плазматической мембраны. Поверхностный слой животных клеток называется гликокалис. Он осуществляет связь клеток с внешней средой и со всеми окружающими ее веществами. Толщина его менее 1мкм.

Строение клетки
Клеточная мембрана - очень важная часть клетки. Она удерживает вместе все клеточные компоненты и разграничивает внешнюю и внутреннюю среду.
Между клетками и внешней средой постоянно происходит обмен веществ. Из внешней среды в клетку поступает вода, разнообразные соли в форме отдельных ионов, неорганические и органические молекулы. Во внешнюю среду через мембрану из клетки выводятся продукты обмена, а также вещества, синтезированные в клетке: белки, углеводы, гормоны, которые вырабатываются в клетках различных желез. Транспорт веществ - одна из главных функций плазматической мембраны.
Цитоплазма - внутренняя полужидкая среда, в которой протекают основные процессы обмена веществ. Последние исследования показали, что цитоплазма - это не есть некий раствор, компоненты которого взаимодействуют друг с другом при случайных столкновениях. Ее можно сравнить с желе, которое начинает "дрожать" в ответ на внешнее воздействие . Именно так цитоплазма воспринимает и передает информацию.
В цитоплазме располагаются ядро и различные органоиды, объединяемые ею в одно целое, что обеспечивает их взаимодействие и деятельность клетки как единой целостной системы. Ядро располагается в центральной части цитоплазмы. Вся внутренняя зона цитоплазмы заполнена эндоплазматической сетью, которая представляет собой клеточный органоид: система канальцев, пузырьков и "цистерн", отграниченных мембранами. Эндоплазматическая сеть участвует в обменных процессах, обеспечивая транспорт веществ из окружающей среды в цитоплазму и между отдельными внутриклеточными структурами, но основная ее функция - участие в синтезе белка, который осуществляется в рибосомах. - микроскопических тельцах округлой формы диаметром 15-20 нм . Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляются.
Кроме белков в цитоплазме содержатся также митохондрии, мелкие тельца размером 0,2-7мкм., которые называют "силовыми станциями" клеток. В митохондриях протекают окислительно-восстановительные реакции, обеспечивающие клетки энергией. Число митохондрий в одной клетке от единиц до нескольких тысяч.
Ядро - жизненная часть клетки, управляет синтезом белков и через них всеми физиологическими процессами в клетке. В ядре неделящейся клетки различают ядерную оболочку, ядерный сок, ядрышко и хромосомы. Через ядерную оболочку осуществляется непрерывный обмен веществ между ядром и цитоплазмой. Под ядерной оболочкой - ядерный сок (полужидкое вещество), в котором находятся ядрышко и хромосомы. Ядрышко- плотное округлое тельце, размеры которого могут изменяться в широких пределах, от 1 до 10 мкм и больше. Оно состоит в основном из рибонуклеопротеидов; участвует в образовании рибосом. Обычно в клетке 1-3 ядрышка, иногда до нескольких сотен . В состав ядрышка входят РНК и белок.
С появлением клетки на Земле возникла Жизнь!

Продолжение следует...

краткое содержание других презентаций

«Методика обучения биологии» - Школьная зоология. Знакомство учащихся с применением научных зоологических данных. Нравственное воспитание. Дополнительное освящение курятника. Выбор методов. Процессы жизнедеятельности. Аквариумные рыбки. Питание. Экологическое воспитание. Материальность жизненных процессов. Отрицательные результаты. Внимание учащихся. Обязательная форма. Рассматривание мелких животных. Цели и задачи биологии. Рассказ.

«Проблемное обучение на уроках биологии» - Знания. Новые учебники. Путь к решению. Проблема. Семинары. Что такое задача. Альбрехт Дюрер. Проблемное обучение на уроках биологии. Нестандартные уроки. Что подразумевается под проблемным обучением. Качество жизни. Биология как учебный предмет. Вопрос. Урок решения задач. Снижение интереса к предмету. Проблемно- лабораторные занятия.

«Критическое мышление на уроках биологии» - Технология «критического мышления». Использование технологии «развития критического мышления». Таблица к уроку. Мотивация к учению. Экосистемы. Значение «развития критического мышления». Признаки технологии. Технология «РКМ». Структура урока. Основные направления. История технологии. Педагогические технологии. Правила технологии. Задания по биологии. Фотосинтез. Приемы, используемые на разных стадиях урока.

«Уроки биологии с интерактивной доской» - Электронные учебники. Преимущества для учащихся. Интерактивная доска помогает донести информацию до каждого ученика. Дидактические задачи. Решение биологических задач. Преимущества работы с интерактивными досками. Работа с презентациями. Работа на сравнение объектов. Перемещение объектов. Использование электронных таблиц. Использование интерактивной доски в процессе обучения школьников. Преимущества для преподавателей.

«Системно-деятельностный подход в биологии» - Вопросы семинара. Деятельностный метод. Дриопитеки. Внеземной путь происхождения человека. Лизосомы. Химическая организация. Голосеменные растения. Метаболизм. Анализаторы. Системно-деятельностный подход в обучении биологии. Хромосомы. Цитоплазма. Слепота. Длина ушей. Классификация человека. Скелет млекопитающего. Пути эволюции человека. Митоз. Поверхностный комплекс. Проблемный вопрос. Ядрышко. Ядерная оболочка.

«Компьютер на биологии» - Совместная деятельность учащихся. Семейства покрытосеменных растений. Интерактивное обучение. Модели обучения. Пример системы оценивания. Вопросы инструктивной карточки. Пример инструктивной карточки. Исследователи. Микрогруппы. Технологии интерактивного обучения. Карусель. Интерактивные технологии обучения. Интерактивнные подходы на уроках биологии. Групповая форма работы. Задания для групп «исследователей».