Функции плазматической мембраны. Плазматическая мембрана Строение и функции плазматической

Плазматическая мембрана занимает особое положение, так как ограничивает клетку снаружи и непосредственно связана с внеклеточной средой. Она имеет толщину около 10 нм и представляет собой самую толстую из клеточных мембран. Основными компонентами являются белки (более 60%), липиды (около 40%) и углеводы (около 1%). Как и все остальные мембраны клетки синтезируется в каналах ЭПС.

Функции плазмалеммы.

Транспортная.

Плазматическая мембрана является полупроницаемой, т.е. через нее с различной скоростью проходят избирательно разные молекулы. Существует два способа переноса веществ через мембрану: пассивный и активный транспорт .

Пассивный транспорт. Пассивный транспорт или диффузия не требует затрат энергии. Незаряженные молекулы диффундируют по градиенту концентрации, транспорт заряженных молекул зависит от градиента концентрации протонов водорода и трансмембранной разности потенциалов, которые объединяются в электрохимический протонный градиент. Как правило, внутренняя цитоплазматическая поверхность мембраны несет отрицательный заряд, что облегчает проникновение в клетку положительно заряженных ионов. Различают два типа диффузии: простую и облегченную.

Простая диффузия характерна для небольших нейтральных молекул (Н 2 О, СО 2 , О 2), а также для гидрофобных низкомолекулярных органических веществ. Эти молекулы могут проходить без какого-либо взаимодействия с мембранными белками через поры или каналы мембраны до тех пор, пока будет сохраняться градиент концентрации.

Облегченная диффузия характерна для гидрофильных молекул, которые переносятся через мембрану также по градиенту концентрации, но с помощью специальных мембранных белков-переносчиков по принципу унипорта .

Облегченная диффузия отличается высокой избирательностью, так как белок-переносчик имеет центр связывания, комплементарный транспортируемому веществу, и перенос сопровождается конформационными изменениями белка. Один из возможных механизмов облегченной диффузии следующий: транспортный белок (транслоказа) связывает вещество, затем сближается с противоположной стороной мембраны, освобождает это вещество, принимает исходную конформацию и вновь готов выполнять транспортную функцию. Мало известно о том, как осуществляется передвижение самого белка. Другой возможный механизм переноса предполагает участие нескольких белков-переносчиков. В этом случае первоначально связанное соединение само переходит от одного белка к другому, последовательно связываясь то с одним, то с другим белком, пока не окажется на противоположной стороне мембраны.

Активный транспорт. Такой транспорт имеет место в случае, когда перенос осуществляется против градиента концентрации. Он требует затраты энергии клеткой. Активный транспорт служит для накопления веществ внутри клетки. Источником энергии часто является АТФ. Для активного транспорта, кроме источника энергии, необходимо участие мембранных белков. Одна из активных транспортных систем в клетке животных отвечает за перенос ионов Na и К + через клеточную мембрану. Эта система называется Na + - К*-насос. Она отвечает за поддержание состава внутриклеточной среды, в которой концентрация ионов К + выше, чем ионов Na*.

Градиент концентрации обоих ионов поддерживается путем переноса К + внутрь клетки, a Na + наружу. Оба транспорта происходят против градиента концентрации. Такое распределение ионов определяет содержание воды в клетках, возбудимость нервных клеток и клеток мышц и другие свойства нормальных клеток. Na + -К + -насос представляет собой белок - транспортную АТФазу. Молекула этого фермента является олигомером и пронизывает мембрану. За полный цикл работы насоса из клетки в межклеточное вещество переносится 3 иона Na + , а в обратном направлении - 2 иона К + , при этом используется энергия молекулы АТФ. Существуют транспортные системы для переноса ионов кальция (Са 2+ -АТФазы), протонные насосы (Н + -АТФазы) и др.

Активный перенос вещества через мембрану, осуществляемый за счет энергии градиента концентрации другого вещества называется симпортом . Транспортная АТФаза в этом случае имеет центры связывания для обоих веществ. Антипорт - это перемещение вещества против градиента своей концентрации. При этом другое вещество движется в противоположном направлении по градиенту своей концентрации. Симпорт и антипорт (котранспорт) могут происходить при всасывании аминокислот из кишечника и реабсорбции глюкозы из первичной мочи, при этом используется энергия градиента концентрации ионов Na + , создаваемого Na + , K + -АТФазой.

Еще 2 разновидности транспорта - эндоцитоз и экзоцитоз.

Эндоцитоз - захват клеткой крупных частиц. Существует несколько способов зндоцитоза: пиноцитоз и фагоцитоз. Обычно под пиноцитозом понимают захват клеткой жидких коллоидных частиц, под фагоцитозом - захват корпускул (более плотных и крупных частиц вплоть до других клеток). Механизм пино- и фагоцитоза различен.

В общем виде поступление в клетку твердых частиц или капель жидкости извне называется гетерофагией. Этот процесс наиболее широко распространен у простейших, но очень важен и у человека (равно как и у других млекопитающих). Гетерофагия играет существенную роль в защите организма (сегментоядерные нейтрофилы - гранулоциты; макрофагоциты), перестройке костной ткани (остеокласты), образовании тироксина фолликулами щитовидной железы, реабсорбции белка и других макромолекул в проксимальном отделе нефрона и других процессах.

Пиноцитоз.

Для того чтобы внешние молекулы поступили в клетку, должны быть сначала связаны рецепторами гликокаликса (совокупность молекул, связанных с поверхностными белками мембраны) (рис.).

В месте такого связывания под плазмалеммой обнаруживаются молекулы белка клатрина. Плазмалемма вместе с присоединенными извне молекулами и подстилаемая со стороны цитоплазмы клатрином начинает впячиваться. Впячивание становится все глубже, его края сближаются и затем смыкаются. В результате от плазмалеммы отщепляется пузырек, несущий в себе захваченные молекулы. Клатрин на его поверхности выглядит на электронных мнкрофотографиях как неровная каемка, поэтому такие пузырьки получили название окаймленных.

Клатрин не дает возможности пузырькам присоединятся к внутриклеточным мембранам. Поэтому окаймленные пузырьки могут беспрепятственно транспортироваться в клетке именно к тем участкам цитоплазмы, где должно использоваться их содержимое. Так к ядру доставляются, в частности, стероидные гормоны. Однако обычно окаймленные пузырьки сбрасывают кайму вскоре после отщепления от плазмалеммы. Клатрин переносится к плазмалемме и снова может участвовать в реакциях эндоцитоза.

У поверхности клетки в цитоплазме имеются более постоянные пузырьки - эндосомы. Окаймленные пузырьки сбрасывают клатрин и сливаются с эндосомами, при этом объем и поверхность эндосом увеличивается. Затем избыточная часть эндосом отщепляется в виде нового пузырька, в котором нет поступивших в клетку веществ, они остаются в эндосоме. Новый пузырек направляется к поверхности клетки и сливается с мембраной. В результате убыль плазмалеммы, возникшая при отщеплении окаймленного пузырька, восстанавливается, при этом в плазмалемму возвращаются и ее рецепторы.

Эндосомы погружаются в цитоплазму и сливаются с мембранами лизосомы. Поступившие вещества внутри такой вторичной лизосомы подвергаются различным биохимическим превращениям. По завершении процесса мембрана лизосомы может распадаться на фрагменты, а продукты распада и содержимого лизосомы становятся доступными для внутриклеточных метаболических реакций. Так, например, аминокислоты связываются тРНК и доставляются к рибосомам, а глюкоза может поступать в комплекс Гольджи, либо в канальцы агранулярной ЭПС.

Хотя эндосомы и не обладают клатриновой каймой, не все они сливаются с лизосомами. Часть из них направляется от одной поверхности клетки к другой (если клетки образуют эпителиальный пласт). Там мембрана эндосомы сливается с плазмолеммой и содержимое выводится вовне. В результате вещества переносятся через клетку из одной среды в другую без изменений. Этот процесс называют трансцитозом . Путем трансцитоза могут переноситься и белковые молекулы, в частности иммуноглобулины.

Фагоцитоз.

Если крупная частица имеет на поверхности молекулярные группировки, которые могут распознаваться рецепторами клетки, она связывается. Далеко не всегда чужеродные частицы сами обладают такими группировками. Однако, попадая в организм, они окружаются молекулами иммуноглобулинов (опсонинами), которые всегда содержатся и в крови, и в межклеточной среде. Иммуноглобулины всегда распознаются клетками-фагоцитами.

После того как покрывающие чужеродную частицу опсонины связались с рецепторами фагоцита, активируется его поверхностный комплекс. Актиновые микрофиламенты начинают взаимодействовать с миозином, и конфигурация поверхности клетки изменяется. Вокруг частицы вытягиются выросты цитоплазмы фагоцита. Они охватывают поверхность частицы и объединяются над ней. Наружные листки выростов сливаются, замыкая поверхность клетки.

Глубокие листки выростов образуют мембрану вокруг поглощенной частицы - формируется фагосома. Фагосома сливается с лизосомами, в результате чего возникает их комплекс - гетеролизосома (гетеросома, или фаголизосома). В ней происходит лизис захваченных компонентов частицы. Часть продуктов лизиса выводится из гетеросомы и утилизируется клеткой, часть же может оказаться не поддающейся действию лизосомных ферментов. Эти остатки образуют остаточные тельца.

Потенциально все клетки обладают способностью к фагоцитозу, но в организме лишь некоторые специализируются в этом направлении. Таковы нейтрофильные лейкоциты и макрофаги.

Экзоцитоз.

Это выведение веществ из клетки. Сначала крупномолекулярные соединения сегрегируются в комплексе Голъджи в виде транспортных пузырьков. Последние с участием микротрубочек направляются к клеточной поверхности. Мембрана пузырька встраивается в плазмалемму, и содержимое пузырька оказывается за пределами клетки (рис.) Слияние пузырька с плазмалеммой может совершать без каких-либо дополнительных сигналов. Такой экзоцитоз называют конститутивным. Так выводится из клетгсд большинство продуктов ее собственного метаболизма. Ряд клеток, однако, предназначен для синтеза специальных соединений - секретов, которые используются в организме в других его частях. Для того чтобы транспортный пузырек с секретом слился с плазмалеммои, необходимы сигналы извне. Только тогда произойдет слияние и секрет освободится. Такой экзоцитоз называют регулируемым . Сигнальные молекулы, способствующие выведению секретов, называются либеринами (рилизинг-факторами), а препятствующие выведению - статинами.

Рецепторные функции.

В основном обеспечиваются гликопротеинами, расположенными на поверхности плазмалеммы и способными связываться со своими лигандами. Лиганд соответствует своему рецептору как ключ - замку. Связывание лиганда с рецептором вызывает изменение конформации полипептида. При таком изменении трансмембранного белка устанавливается сообщение между вне- и внутриклеточной средой.

Типы рецепторов.

Рецепторы, связанные с белковыми ионными каналами. Они взаимодействуют с сигнальной молекулой, временно открывающей или закрывающей канал для прохождения ионов. (Например, рецептор нейромедиатора ацетилхолина - белок, состоящий из 5 субъединиц, образующих ионный канал. В отсутствии ацетилхолина канал закрыт, а после присоединения открывается и пропускает ионы натрия).

Каталитические рецепторы. Состоят из внеклеточной части (собственно рецептор) и внутриклеточной цитоплазматической части, которая функционирует как фермент пролинкиназа (например, рецепторы гормона роста).

Рецепторы, связанные с G-белками. Это трансмембранные белки, состоящие из рецептора, взаимодействующего с лигандом, и G-белка (гуанозинтрифосфат-связанного регуляторного белка), который передает сигнал на связанный с мембраной фермент (аденилатциклазу) или на ионный канал. В результате активируется циклический АМФ или ионы кальция. (Так работает аденилатциклазная система. Например, в клетках печени находится рецептор гормона инсулина. Надклеточная часть рецептора связывается с инсулином. Это вызывает активацию внутриклеточной части - фермента аденилатциклазы. Она синтезирует из АТФ циклический АМФ, регулирующий скорость различных внутриклеточных процессов, вызывая активацию или ингибирование тех или иных ферментов метаболизма).

Рецепторы, воспринимающие физические факторы. Например, фоторецепторный белок родопсин. При поглощении света он меняет свою конформацию и возбуждает нервный импульс.

Состоит из билипидного слоя, липиды которого строго ориентированы - гидрофобная часть липидов (хвост), обращена внутрь слоя, тогда как гидрофильная часть (головка) - наружу. Помимо липидов в построении плазматической мембраны принимают участие мембранные белки трех видов: периферические, интегральные и полуинтегральные.

Одним из направлений исследования мембран в настоящее время является детальное изучение свойств как разнообразных структурных и регуляторных липидов, так и индивидуальных интегральных и полуинтегральных белков, входящих в состав мембран.

Интегральные белки мембран

Основную роль в организации собственно мембраны играют интегральные и полуинтегральные белки, имеющие глобуляр-ную структуру и связанные с липидной фазой гидрофильно--гидрофобными взаимодействиями. Глобулы интегральных бел-ков пронизывают всю толщу мембраны, причем их гидрофоб-ная часть находится посредине глобулы и погружена в гидро-фобную зону липидной фазы.

Полуинтегральные белки мембран

У полуинтегральных белков гидрофобные аминокислоты сосредоточены на одном из полюсов глобулы, и соответственно глобулы погружены в мембрану лишь наполовину, выступая наружу с какой-то одной (внешней или внутренней) поверхности мембраны.

Функции мембранных белков

Интегральным и полуинтегральным белкам плазматической мембраны раньше приписывали две функции: общую структур-ную и специфическую. Соответственно этому среди них разли-чали структурные и функциональные белки. Однако усовершен-ствование методов выделения белковых фракций мембран и бо-лее детальный анализ индивидуальных белков говорят сейчас об отсутствии универсальных для всех мембран структурных бел-ков, не несущих никаких специфических функций. Напротив, мембранные белки, обладающие специфическими функциями, весьма разнообразны. Это и белки, осуществляющие рецептор-ные функции, белки, являющиеся активными и пассивными пе-реносчиками различных соединений, наконец, белки, входящие в состав многочисленных ферментных систем. Материал с сайта

Свойства мембранных белков

Общим свойством всех этих интегральных и полуинтегральных белков мембран, различающихся не только в функциональ-ном, но и в химическом отношении, является их принципиальная способность к перемещению, «плаванию» в плоскости мем-браны в жидкой липидной фазе. Как отмечалось выше, суще-ствование таких перемещений в плазматических мембранах не-которых клеток доказано экспериментально. Но это далеко не единственный тип перемещения, выявленный у мембранных бел-ков. Помимо латерального смещения отдельные интегральные и полуинтегральные белки могут вращаться в плоскости мембраны в горизонтальном и даже в вертикальном направлениях, а также могут менять степень погруженности молекулы в ли-пидную фазу.

Опсин. Все эти разнообразные и сложные перемещения белко-вых глобул особенно хорошо показаны на примере белка опсина, специфического для мембран фоторецепторных кле-ток (рис. 3). Как известно, опсин в темноте связан с ка-ротиноидом ретиналем, кото-рый содержит двойную циссвязь; комплекс ретиналя и опсина образует родопсин, или зрительный пурпур. Молекула родопсина способна к лате-ральному перемещению и вра-щению в горизонтальной пло-скости мембраны (рис. 3, А). При действии света ретиналь подвергается фотоизомериза-ции и переходит в транс-фор-му. При этом изменяется кон-формация ретиналя и он отде-ляется от опсина, который, в свою очередь, меняет плоскость вращения с горизонтальной на вертикальную (рис. 3, Б). Следствием подобных превращений является изменение проницаемости мембран для ионов, что и приводит к возникновению нервного импульса.

Интересно, что индуцируемые световой энергией изменения конформации опсиновых глобул не только могут служить для генерации нервного импульса, как происходит в клетках сет-чатки глаза, но и являются простейшей фотосинтезирующей системой, встречающейся у особых пурпурных бактерий

Основу структурной организации клетки составляют биологические мембраны. Плазматическая мембрана (плазмалемма) — это мембрана, окружающая цитоплазму живой клетки. Мембраны состоят из липидов и белков. Липиды (в основном фосфолипиды) образуют двойной слой, в котором гидрофобные «хвосты» молекул обращены внутрь мембраны, а гидрофильные — к её поверхностям. Молекулы белков могут располагаться на внешней и внут-ренней поверхности мембраны, могут частично погружать-ся в слой липидов или пронизывать её насквозь. Большая часть погруженных белков мембран — ферменты. Это жид-костно-мозаичная модель строения плазматической мем-браны. Молекулы белка и липидов подвижны, что обеспе-чивает динамичность мембраны. В состав мембран входят также углеводы в виде гликолипидов и гликопротеинов (гликокаликс), располагающихся на внешней поверхности мембраны. Набор белков и углеводов на поверхности мем-браны каждой клетки специфичен и является своеобраз-ным указателем типа клеток.

Функции мембраны:

  1. Разделительная. Она заключается в образовании барьера между внутренним содержимым клетки и внешней средой.
  2. Обеспечение обмена веществ между цитоплазмой и внешней средой. В клетку поступают вода, ионы, неорганические и органические молекулы (транспортная функ-ция). Во внешнюю среду выводятся продукты, образован-ные в клетке (секреторная функция).
  3. Транспортная. Транспорт через мембрану может проходить разными путями. Пассивный транспорт осуществляется без затрат энергии, путем простой диффузии, осмоса или облегченной диффузии с помощью белков- переносчиков. Активный транспорт — с помощью белков-переносчиков, и он требует затрат энергии (например, натрий-калиевый насос). Материал с сайта

Крупные молекулы биополимеров попадают внутрь клетки в результате эндоцитоза. Его разделяют на фагоци-тоз и пиноцитоз. Фагоцитоз — захват и поглощение клет-кой крупных частиц. Явление впервые было описано И.И. Мечниковым. Сначала вещества прилипают к плаз-матической мембране, к специфическим белкам-рецеп-торам, затем мембрана прогибается, образуя углубление.

Образуется пищеварительная вакуоль. В ней переварива-ются поступившие в клетку вещества. У человека и живот-ных к фагоцитозу способны лейкоциты. Лейкоциты по-глощают бактерии и другие твердые частицы.

Пиноцитоз — процесс захвата и поглощения капель жидкости с растворенными в ней веществами. Вещества прилипают к белкам мембраны (рецепторам), и капля рас-твора окружается мембраной, формируя вакуоль. Пиноци-тоз и фагоцитоз происходят с затратой энергии АТФ.

  1. Секреторная. Секреция — выделение клеткой ве-ществ, синтезированных в клетке, во внешнюю среду. Гормоны, полисахариды, белки, жировые капли, заключа-ются в пузырьки, ограниченные мембраной, и подходят к плазмалемме. Мембраны сливаются, и содержимое пу-зырька выводится в среду, окружающую клетку.
  2. Соединение клеток в ткани (за счет складчатых вы-ростов).
  3. Рецепторная. В мембранах имеется большое число рецепторов — специальных белков, роль которых заключа-ется в передаче сигналов извне внутрь клетки.

1. Барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой.

Клеточные мембраны обладают избирательной проницаемостью : через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, мембраны сами активно регулируют этот процесс - одни вещества пропускают, а другие нет.

2. Транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу:

а) Пассивный (диффузия, осмос) (не требует затрат энергии)

Диффузия

Распространение молекул или атомов одного вещества между молекулами или атомами другого, приводящее к самопроизвольному выравниванию их концентраций по всему занимаемому объёму. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (вдоль вектора градиента концентрации (рис. 2.4).

Рис. 2.4. Схема процесса диффузии

Осмос

Процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества из объёма с меньшей концентрацией растворенного вещества (рис. 2.5).

Рис. 2.5. Схема процесса осмоса

б) Активный транспорт (требует затрат энергии)

Калий-натриевый насос (sodium-potassium pump) - механизм активного сопряженного трансмембранного транспорта ионов натрия (из клетки) и ионов калия (внутрь клетки), который обеспечивает концентрационный градиент и трансмембранную разность потенциалов. Последняя служит основой многих функций клеток и органов: секреции клеток желез, сокращения мышц, проведения нервных импульсов и др.(рис. 2.6).

Рис. 2.6. Схема работы калиево-натриевого насоса

На первой стадии фермент Na + /K + -АТФаза присоединяет с внутренней стороны мембраны три иона Na + . Эти ионы изменяют конформацию активного центра АТФ-азы. После этого фермент способен гидролизовать одну молекулу АТФ. Выделившаяся после гидролиза энергия расходуется на изменение конформации переносчика, благодаря чему три иона Na + и ион PO 4 3− (фосфат) оказываются на внешней стороне мембраны. Здесь ионы Na + отщепляются, а PO 4 3− замещается на два иона К + . После этого фермент возвращается в исходную конформацию, и ионы К + оказываются на внутренней стороне мембраны. Здесь ионы К + отщепляются, и переносчик вновь готов к работе.

В итоге во внеклеточной среде создается высокая концентрация ионов Na + , а внутри клетки - высокая концентрация K + . Эта разность концентраций используется в клетках при проведении нервного импульса.

в) Эндоцитоз (фагоцитоз, пиноцитоз)

Фагоцитоз (поедание клеткой) - процесс поглощения клеткой твёрдых объектов, таких как клетки эукариот, бактерии, вирусы, остатки мёртвых клеток и т. п. Вокруг поглощаемого объекта образуется большая внутриклеточная вакуоль (фагосома). Размер фагосом - от 250 нм и больше. Путем слияния фагосомы с первичной лизосомой образуется вторичная лизосома. В кислой среде гидролитические ферменты расщепляют макромолекулы, оказавшиеся во вторичной лизосоме. Продукты расщепления (аминокислоты, моносахариды и прочие полезные вещества) транспортируются затем через лизосомную мембрану в цитоплазму клетки. Фагоцитоз распространен очень широко. У высокоорганизованных животных и человека процесс фагоцитоза играет защитную роль. Фагоцитарная деятельность лейкоцитов и макрофагов имеет огромное значение в защите организма от попадающих в него патогенных микробов и других нежелательных частиц. Фагоцитоз впервые описал русский ученый И. И. Мечников(рис. 2.7)

Пиноцитоз (питьё клеткой) - процесс поглощения клеткой жидкой фазы из окружающей среды, содержащей растворимые вещества, включая крупные молекулы (белки, полисахариды и др.). При пиноцитозе от мембраны отшнуровываются внутрь клетки небольшие пузырьки - эндосомы. Они меньше фагосом (их размер до 150 нм) и обычно не содержат крупных частиц. После образования эндосомы к ней подходит первичная лизосома, и эти два мембранных пузырька сливаются. Образовавшаяся органелла носит название вторичной лизосомы. Процесс пиноцитоза постоянно осуществляют все эукариотические клетки (рис. 7)

Рецептор-опосредованный эндоцитоз - активный специфический процесс, при котором клеточная мембрана выпучивается внутрь клетки, формируя окаймлённые ямки. Внутриклеточная сторона окаймлённой ямки содержит набор адаптивных белков. Макромолекулы, связывающиеся со специфическими рецепторами на поверхности клетки, проходят внутрь со значительно большей скоростью, чем вещества, поступающие в клетки за счет пиноцитоза.

Рис. 2.7. Эндоцитоз

г) Экзоцитоз (отрицательный фагоцитоз и пиноцитоз)

Клеточный процесс, при котором внутриклеточные везикулы (мембранные пузырьки) сливаются с внешней клеточной мембраной. При экзоцитозе содержимое секреторных везикул (экзоцитозных пузырьков) выделяется наружу, а их мембрана сливается с клеточной мембраной. Практически все макромолекулярные соединения (белки, пептидные гормоны и др.) выделяются из клетки этим способом (рис. 2.8)

Рис. 2.8. Схема экзоцитоза

3. Генерация и проведение биопотенциалов - с помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

4. Механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях).

5. Энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;

6. Рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

7. Ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

8. Матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;

9. Маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Клеточные включения

К клеточным включениям относятся углеводы, жиры и белки. Все эти вещества накапливаются в цитоплазме клетки в виде капель и зерен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ.

Цитоплазма

Это часть живой клетки (протопласта) без плазматической мембраны и ядра. В состав цитоплазмы входят: цитоплазматический матрикс, цитоскелет, органоиды и включения (иногда включения и содержимое вакуолей к живому веществу цитоплазмы не относят). Отграниченная от внешней среды плазматической мембраной, цитоплазма представляет собой внутреннюю полужидкую среду клеток. В цитоплазму эукариотических клеток располагаются ядро и различные органоиды. В ней сосредоточены и разнообразные включения - продукты клеточной деятельности, вакуоли, а также мельчайшие трубочки и нити, образующие скелет клетки. В составе основного вещества цитоплазмы преобладают белки.

Функции цитоплазмы

1) в ней протекают основные процессы обмена веществ.

2) объединяет в одно целое ядро и все органоиды, обеспечивает их взаимодействие.

3) подвижность, раздражимость, метаболизм и размножение.

Подвижность проявляется в различных формах:

Внутриклеточное движение цитоплазмы клетки.

Амебовидное движение. Эта форма движения выражается в образовании цитоплазмой псевдоподий в сторону того или иного раздражителя или от него. Эта форма движения присуща амебе, лейкоцитам крови, а также некоторым тканевым клеткам.

Мерцательное движение. Проявляется в виде биений крошечных протоплазматических выростов - ресничек и жгутиков (инфузории, клетки эпителия многоклеточных животных, спермии и др.).

Сократительное движение. Обеспечивается благодаря присутствию в цитоплазме специального органоида миофибрилл, укорочение или удлинение которого способствуют сокращению и расслаблению клетки. Способность к сокращению наиболее развита у мышечных клеток.

Раздражимость выражается в способности клеток реагировать на раздражение изменением обмена веществ и энергии.

Цитоскелет

Одной из отличительных особенностей эукариотической клетки является наличие в ее цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета, тесно связанные с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме.

Цитоскелет образован микротрубочками, микрофиламентами и микротрабекулярной системой. Цитоскелет определяет форму клетки, участвует в движениях клетки, в делении и перемещениях самой клетки, во внутриклеточном транспорте органоидов.

Микротрубочки содержатся во всех эукариотических клетках и представляют собой полые неразветвленные цилиндры, диаметр которых не превышает 30 нм, а толщина стенки - 5 нм. В длину они могут достигать нескольких микрометров. Легко распадаются и собираются вновь. Стенка микротрубочек в основном построена из спирально уложенных субъединиц белка тубулина (рис. 2.09)

Функции микротрубочек :

1) выполняют опорную функцию;

2) образуют веретено деления; обеспечивают расхождение хромосом к полюсам клетки; отвечают за перемещение клеточных органелл;

3) принимают участие во внутриклеточном транспорте, секреции, формировании клеточной стенки;

4) являются структурным компонентом ресничек, жгутиков, базальных телец и центриолей.

Микрофиламенты представлены нитями диаметром 6 нм, состоящими из белка актина, близкого к актину мышц. Актин составляет 10-15% общего количества белка клетки. В большинстве животных клеток образуется густая сеть из актиновых филаментов и связанных с ними белков под самой плазматической мембраной.

Помимо актина, в клетке обнаруживаются и нити миозина. Однако количество их значительно меньше. Благодаря взаимодействию актина и миозина происходит сокращение мышц. Микрофиламенты связаны с движением всей клетки либо ее отдельных структур внутри нее. В некоторых случаях движение обеспечивается только актиновыми филаментами, в других - актином вместе с миозином.

Функции микрофиламентов

1) механическая прочность

2) позволяет клетке изменять свою форму и двигаться.

Рис. 2.09. Цитоскелет

Органоиды (или органеллы)

Делятся на немембранные, одномембранные и двумембранные .

К немембранным органоидам эукариотической клетки относятся органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе тубулиновых микротрубочек – клеточный центр (центриоли) и органоиды движения (жгутики и реснички). В клетках большинства одноклеточных организмов и подавляющего большинства высших (наземных) растений центриоли отсутствуют.

К одномембранным органоидам относятся: эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы, сферосомы, вакуоли и некоторые другие. Все одномембранные органоиды связаны между собой в единую систему клетки. В растительных клетках имеются особенные лизосомы, в животных клетках имеются особенные вакуоли: пищеварительные, выделительные, сократительные, фагоцитарные, аутофагоцитарные и др.

К двумембранным органоидам относятся митохондрии и пластиды.

Немембранные органоиды

А) Рибосомы – органоиды, встречающиеся в клетках всех организмов. Это мелкие органеллы, представленные глобулярными частицами диаметром порядка 20 нм. Рибосомы состоят из двух субъединиц неравного размера - большой и малой. В состав рибосом входят белки и рибосомальные РНК (рРНК). Различают два основных типа рибосом: эукариотические (80S) и прокариотические (70S).

В зависимости от локализации в клетке, различают свободные рибосомы, находящиеся в цитоплазме, синтезирующие белки и прикрепленные рибосомы - рибосомы, связанные большими субъединицами с наружной поверхностью мембран ЭПР, синтезирующие белки, которые поступают в комплекс Гольджи, а затем секретируются клеткой. Во время биосинтеза белка рибосомы могут объединяться в комплексы - полирибосомы (полисомы).

Рибосомы эукариот образуются в ядрышке. Сначала на ядрышковой ДНК синтезируются рРНК, которые затем покрываются поступающими из цитоплазмы рибосомальными белками, расщепляются до нужных размеров и формируют субъединицы рибосом. Полностью сформированных рибосом в ядре нет. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Рибосомы обнаружены в клетках всех организмов. Каждая состоит из двух частиц, малой и большой. В состав рибосом входят белки и РНК.

Функции

синтез белка.

Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки. ЭПС и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков (рис. 2.10-2.11).

Рис. 2.10. Строение рибосомы

Рис. 2.11. Строение рибосом

В) Клеточный центр (центриоли)

Центриоль представляет собой цилиндр (длиной 0,3 мкм и диаметром 0,1 мкм), стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Часто центриоли объединены в пары, где они расположены под прямым углом друг к другу. Если центриоль лежит в основании реснички или жгутика, то ее называют базальным тельцем.

Почти во всех животных клетках имеется пара центриолей, являющихся срединным элементом клеточного центра.

Перед делением центриоли расходятся к противоположным полюсам и возле каждой из них возникает дочерняя центриоль. От центриолей, расположенных на разных полюсах клетки, образуются микротрубочки, растущие навстречу друг другу.

Функции

1) формируют митотическое веретено, способствующее равномерному распределению генетического материала между дочерними клетками,

2) являются центром организации цитоскелета. Часть нитей веретена прикрепляется к хромосомам.

Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы. Они возникают в результате дупликации уже имеющихся. Это происходит при расхождении центриолей. Незрелая центриоль содержит 9 одиночных микротрубочек; по-видимому, каждая микротрубочка является матрицей при сборке триплетов, характерных для зрелой центриоли(рис. 2.12).

Цетриоли имеются в клетках низших растений (водоросли).

Рис. 2.12. Центриоли клеточного центра

Одномембранные органоиды

Г) Эндоплазматическая сеть (ЭПС)

Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети. Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа - гранулярная и гладкая .

На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец - рибосом , которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности. ЭПС выполняет много разнообразных функций.

Функции

Основная функция гранулярной эндоплазматической сети - участие в синтезе белка, который осуществляется в рибосомах. На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются в каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. ЭПС связывает между собой основные органоиды клетки(рис. 2.13).

Рис. 2.13. Строение эндоплазматической сети (ЭПС) или ретикулума

Д) Аппарат Гольджи

Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы. Выполняет много важных функций.

Одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями, с которыми связана система мелких одномембранных пузырьков (пузырьки Гольджи). Пузырьки Гольджи в основном сконцентрированы на стороне, примыкающей к ЭПС, и по периферии стопок. Полагают, что они переносят в аппарат Гольджи белки и липиды, молекулы которых, передвигаясь из цистерны в цистерну, подвергаются химической модификации.

Все эти вещества сначала накапливаются, химически усложняются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме (рис. 2.14-2.15).

Рис. 2.14. Строение аппарата Гольджи

Функции :

Модификация и накопление белков, липидов, углеводов;

Упаковка в мембранные пузырьки (везикулы) поступивших органических веществ;

Место образования лизосом;

Секреторная функция, поэтому аппарат Гольджи хорошо развит в секреторных клетках.


Рис. 2.15. Комплекс Гольджи

Е) Лизосомы

Представляют собой небольшие округлые тельца. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты. К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизосом.

Ферменты лизосом синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки лизосом. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом .

Различают первичные и вторичные лизосомы. Первичными называются лизосомы, отпочковавшиеся от аппарата Гольджи.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Функции лизосом:

1) переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток),

2) аутофагия - уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки,

3) автолиз - самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток) (рис. 2.16-2.17).

Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.


Рис. 2.16. Образование лизосом

Рис. 2.17. Функционирование лизосом

Ж) Пероксисомы

Органоиды, сходные по строению с лизосомами, пузырьки с диаметром до 1,5 мкм с однородным матриксом, содержащим около 50 ферментов.

Каталаза вызывает распад перекиси водорода 2Н 2 О 2 → 2Н 2 О + О 2 и предотвращает перекисное окисление липидов

Образуются пероксисомы отпочковываваясь от ранее существующих, т.е. относятся к самовоспроизводящимся органоидам, несмотря на то, что не содержат ДНК. Растут благодаря поступлению в них ферментов, ферменты пероксисом образуются на шероховатой ЭПС и в гиалоплазме (рис. 2.18) .

Рис. 2.18. Пероксисома (в центре кристаллический нуклеоид)

З) Вакуоли

Одномембранные органоиды. Вакуоли представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи.

Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль.

Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом .

Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

Из органических веществ чаще запасаются сахара и белки. Сахара – чаще в виде растворов, белки поступают в виде пузырьков ЭПР и аппарата Гольджи, после чего вакуоли обезвоживаются, превращаясь в алейроновые зерна.

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции

У растений

1) накопление жидкости и поддержание тургора,

2) накопление запасных питательных веществ и минеральных солей,

3) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей плодов и семян.

У животных:

4) пищеварительные вакуоли – разрушают органические макромолекулы;

5) сократительные вакуоли регулируют осмотическое давление клетки и выводят ненужные вещества из клетки

6) фагоцитарные вакуоли образуются при фагоцитозе иммунными клетками антигенов

7) аутофагоцитарные вакуоли образуются при фагоцитозе иммунными клетками собственных тканей

Двумембранные органоиды (митохондрии и пластиды)

Эти органоиды являются полуавтономными, поскольку обладают собственной ДНК и собственным белоксинтезирующим аппаратом. Митохондрии имеются практически во всех эукариотических клетках. Пластиды имеются только в растительных клетках.

И) Митохондрии

Это органеллы энергообеспечения метаболических процессов в клетке. В гиалоплазме митохондрии распределены обычно диффузно, однако в специализированных клетках сосредоточены в тех участках, где имеется наибольшая потребность в энергии. Например, в мышечных клетках большие количества митохондрий сосредоточены вдоль сократительных фибрилл, вдоль жгутика сперматозоида, в эпителии почечных канальцев, в области синапсов и т. д. Такое расположение митохондрий обеспечивает меньшие потери АТФ во время ее диффузии.

Наружная мембрана отделяет митохондрию от цитоплазмы, замкнута сама на себя и не образует впячиваний. Внутренняя мембрана ограничивает внутреннее содержимое митохондрий – матрикс. Характерная особенность – образование многочисленных впячиваний – крист, за счет чего площадь внутренних мембран увеличивается. Количество и степень развития крист зависит от функциональной активности ткани. Митохондрии имеют собственный генетический материал (рис. 2.19).

ДНК митохондрий – это замкнутая кольцевая двуспиральная молекула, в клетках человека имеет размер 16569 нуклеотидных пар, это приблизительно в 105 раз меньше ДНК, локализованной в ядре. Митохондрии обладают собственной белоксинтезирующей системой, количество же транслируемых с митохондриальной мРНК белков ограничено. Митохондриальные ДНК не могут кодировать все митохондриальные белки. Большая часть белков митохондрий находится под генетическим контролем ядра.

Рис. 2.19. Строение митохондрий

Функции митохондрий

1) образование АТФ

2) синтез белка

3) участие в специфических синтезах, например, синтез стероидных гормонов (надпочечники)

4) отработавшие митохондрии могут накапливать и продукты экскреции, вредные вещества, т.е. способны брать на себя функции других органелл клетки

К) Пластиды

Пластиды –органеллы, характерные только для растений.

Различают три типа пластид:

1) хлоропласты (пластиды зеленого цвета);

2) хромопласты (пластиды желтого, оранжевого или красного цвета)

3) лейкопласты (бесцветные пластиды).

Обычно в клетке встречаются пластиды только одного типа.

Хлоропласты

Эти органоиды содержатся в клетках листьев и других зеленых органов растений, а также у разнообразных водорослей. У высших растений в одной клетке обычно бывает несколько десятков хлоропластов. Зеленый цвет хлоропластов зависит от содержания в них пигмента хлорофилла.

Хлоропласт - основной органоид клеток растений, в котором происходит фотосинтез, т. е. образование органических веществ (углеводов) из неорганических (СО 2 и Н 2 О) при использовании энергии солнечного света. По строению хлоропласты сходны с митохондриями.

Хлоропласты имеют сложное строение. От гиалоплазмы они отграничены двумя мембранами – наружной и внутренней. Внутреннее содержимое называется строма . Внутренняя мембрана формирует внутри хлоропласта сложную, строго упорядоченную систему мембран, имеющих форму плоских пузырьков, называемых тилакоидами .

Тилакоиды собраны в стопки - граны , напоминающие столбики монет. Граны связаны между собой тилакоидами стромы, проходящими через них насквозь вдоль пластиды (рис. 2.20-2.22). Хлорофилл и хлоропласты образуются только на свету.

Рис. 2.20. Хлоропласты под световым микроскопом

Рис. 2.21. Строение хлоропласта под электронным микроскопом

Рис. 2.22. Схематичное строение хлоропластов

Функции

1) фотосинтез (образование органических веществ из неорганических веществ за счет энергии света). Центральная роль в этом процессе принадлежит хлорофиллу. Он поглощает энергию света и направляет ее на осуществление реакций фотосинтеза. В хлоропластах, как и в митохондриях, происходит синтез АТФ.

2) участвуют в синтезе аминокислот и жирных кислот,

3) служат хранилищем временных запасов крахмала.

Лейкопласты - мелкие бесцветные пластиды, которые встречаются в клетках органов, скрытых от солнечного света (корни, корневища, клубни, семена). Строение их сходно со строением хлоропластов (рис. 2.23).

Однако, в отличие от хлоропластов, у лейкопластов слабо развита внутренняя мембранная система, т.к. они участвуют в синтезе и накоплении запасных питательных веществ - крахмала, белков и липидов. На свету лейкопласты могут превращаться в хлоропласты.


Рис. 2.23. Строение лейкопласта

Хромопласты - пластиды оранжевого, красного и желтого цвета, который обусловлен пигментами, относящимися к группе каротиноидов. Хромопласты встречаются в клетках лепестков многих растений, зрелых плодов, редко - корнеплодов, а также в осенних листьях. Внутренняя мембранная система в хромопластах, как правило, отсутствует (рис. 24) .

Рис. 2.24. Строение хромопласта

Значение хромопластов до конца еще не выяснено. Большинство из них представляют собой стареющие пластиды. Они, как правило, развиваются из хлоропластов, при этом в пластидах разрушаются хлорофилл и внутренняя мембранная структура, и накапливаются каротиноиды. Это происходит при созревании плодов и пожелтении листьев осенью. Биологическое значение хромопластов состоит в том, что они обусловливают яркую окраску цветков и плодов, привлекающую насекомых для перекрестного опыления и других животных для распространения плодов. В хромопласты могут превращаться и лейкопласты.

Функции пластид

Синтез в хлорофилле органических веществ из простых неорганических соединений: углекислого газа и воды в присутствии квантов солнечного света – фотосинтез, синтез АТФ в световую фазу фотосинтеза

Синтез белков на рибосомах (между внутренними мембранами хлоропласта содержатся ДНК, РНК и рибосомы, следовательно, в хлоропластах, так же как и в митохондриях, происходит синтез белка, необходимого для деятельности этих органоидов).

Присутствие хромопластов объясняется желтая, оранжевая и красная окраска венчиков цветков, плодов, осенних листьев.

Лейкопласты содержат запасающие вещества (в стеблях, корнях, клубнях).

Хлоропласты, хромопласты и лейкопласты способны клетка взаимному переходу. Так при созревании плодов или изменении окраски листьев осенью хлоропласты превращаются в хромопласты, а лейкопласты могут превращаться в хлоропласты, например, при приобретении зеленого цвета клубней картофеля.

В эволюционном смысле первичным, исходным типом пластид являются хлоропласты, из которых произошли пластиды остальных двух типов. Пластиды имеют много общих черт с митохондриями, отличающих их от других компонентов цитоплазмы. Это, прежде всего, оболочка из двух мембран и относительная генетическая автономность, обусловленная наличием собственных рибосом и ДНК. Такое своеобразие органелл легло в основу представления, что предшественниками пластид и митохондрий были бактерии, которые в процессе эволюции оказались встроенными в эукариотическую клетку и постепенно превратились в хлоропласты и митохондрии (рис. 2.25).

Рис. 2.25. Образование митохондрий и хлоропластов по теории симбиогенеза

Клетка – элементарная единица живой системы. Различные структуры живой клетки, которые отвечают за выполнение той или иной функции, получили название органоидов, подобно органам целого организма. Специфические функции в клетке распределены между органоидами, внутриклеточными структурами, имеющими определенную форму, такими, как клеточное ядро, митохондрии и др.

Клеточные структуры:

Цитоплазма . Обязательная часть клетки, заключенная между плазматической мембраной и ядром. Цитозоль – это вязкий водный раствор различных солей и органических веществ, пронизанный системой белковых нитей – цитоскелетам. Большинство химических и физиологических процессов клетки проходят в цитоплазме. Строение: Цитозоль, цитоскелет. Функции: включает различные органоиды, внутренняя среда клетки
Плазматическая мембрана . Каждая клетка животных, растений, ограничена от окружающей среды или других клеток плазматической мембраной. Толщина этой мембраны так мала (около 10 нм.), что ее можно увидеть только в электронный микроскоп.

Липиды в мембране образуют двойной слой, а белки пронизывают всю ее толщину, погружены на разную глубину в липидный слой или располагаются на внешней и внутренней поверхности мембраны. Строение мембран всех других органоидов сходно с плазматической мембраной. Строение: двойной слой липидов, белки, углеводы. Функции: ограничение , сохранение формы клетки, защита от повреждений, регулятор поступления и удаления веществ.

Лизосомы . Лизосомы – это мембранные органоиды. Имеют овальную форму и диаметр 0,5 мкм. В них находится набор ферментов, которые разрушают органические вещества. Мембрана лизосом очень прочная и препятствует проникновению собственных ферментов в цитоплазму клетки, но если лизосома повреждается от каких-либо внешних воздействий, то разрушается вся клетка или часть ее.
Лизосомы встречаются во всех клетках растений, животных и грибов.

Осуществляя переваривание различных органических частиц, лизосомы обеспечивают дополнительным «сырьем» химические и энергетические процессы в клетке. При голодании клетки лизосомы переваривают некоторые органоиды, не убивая клетку. Такое частичное переваривание обеспечивает клетке на какое-то время необходимый минимум питательных веществ. Иногда лизосомы переваривают целые клетки и группы клеток, что играет существенную роль в процессах развития у животных. Примером может служить утрата хвоста при превращении головастика в лягушку. Строение: пузырьки овальной формы, снаружи мембрана, внутри ферменты. Функции: расщепление органических веществ, разрушение отмерших органоидов, уничтожение отработавших клеток.

Комплекс Гольджи . Поступающие в просветы полостей и канальцев эндоплазматической сети продукты биосинтеза концентрируются и транспортируются в аппарате Гольджи. Этот органоид имеет размеры 5–10 мкм.

Строение : окруженные мембранами полости (пузырьки). Функции: накопление, упаковка, выведение органических веществ, образование лизосом

Эндоплазматическая сеть
. Эндоплазматическая сеть является системой синтеза и транспорта органических веществ в цитоплазме клетки, представляющая собой ажурную конструкцию из соединенных полостей.
К мембранам эндоплазматической сети прикреплено большое число рибосом – мельчайших органоидов клетки, имеющих вид сферы с диаметром 20 нм. и состоящих из РНК и белка. На рибосомах и происходит синтез белка. Затем вновь синтезированные белки поступают в систему полостей и канальцев, по которым перемещаются внутри клетки. Полости, канальцы, трубочки из мембран, на поверхности мембран рибосомы. Функции: синтез органических веществ с помощью рибосом, транспорт веществ.

Рибосомы
. Рибосомы прикреплены к мембранам эндоплазматической сети или свободно находятся в цитоплазме, они располагаются группами, на них синтезируются белки. Состав белка, рибосомальная РНК Функции: обеспечивает биосинтез белка (сборку белковой молекулы из ).
Митохондрии . Митохондрии – это энергетические органоиды. Форма митохондрий различна, они могут быть остальными, палочковидными, нитевидными со средним диаметром 1 мкм. и длиной 7 мкм. Число митохондрий зависит от функциональной активности клетки и может достигать десятки тысяч в летательных мышцах насекомых. Митохондрии снаружи ограничены внешней мембраной, под ней – внутренняя мембрана, образующая многочисленные выросты – кристы.

Внутри митохондрий находятся РНК, ДНК и рибосомы. В ее мембраны встроены специфические ферменты, с помощью которых в митохондрии происходит преобразование энергии пищевых веществ в энергию АТФ, необходимую для жизнедеятельности клетки и организма в целом.

Мембрана, матрикс, выросты – кристы. Функции: синтез молекулы АТФ, синтез собственных белков, нуклеиновых кислот, углеводов, липидов, образование собственных рибосом.

Пластиды
. Только в растительной клетке: лекопласты, хлоропласты, хромопласты. Функции: накопление запасных органических веществ, привлечение насекомых-опылителей, синтез АТФ и углеводов. Хлоропласты по форме напоминают диск или шар диаметром 4–6 мкм. С двойной мембраной – наружней и внутренней. Внутри хлоропласта имеются ДНК рибосомы и особые мембранные структуры – граны, связанные между собой и с внутренней мембраной хлоропласта. В каждом хлоропласте около 50 гран, расположенных в шахматном порядке для лучшего улавливания света. В мембранах гран находится хлорофилл, благодаря ему происходит превращение энергии солнечного света в химическую энергию АТФ. Энергия АТФ используется в хлоропластах для синтеза органических соединений, в первую очередь углеводов.
Хромопласты . Пигменты красного и желтого цвета, находящиеся в хромопластах, придают различным частям растения красную и желтую окраску. моркови, плоды томатов.

Лейкопласты являются местом накопления запасного питательного вещества – крахмала. Особенно много лейкопластов в клетках клубней картофеля. На свету лейкопласты могут превращаться в хлоропласты (в результате чего клетки картофеля зеленеют). Осенью хлоропласты превращаются в хромопласты и зеленые листья и плоды желтеют и краснеют.

Клеточный центр . Состоит из двух цилиндров, центриолей, расположенных перпендикулярно друг другу. Функции: опора для нитей веретена деления

Клеточные включения то появляются в цитоплазме, то исчезают в процессе жизнедеятельности клетки.

Плотные, в виде гранул включения содержат запасные питательные вещества (крахмал, белки, сахара, жиры) или продукты жизнедеятельности клетки, которые пока не могут быть удалены. Способностью синтезировать и накапливать запасные питательные вещества обладают все пластиды растительных клеток. В растительных клетках накопление запасных питательных веществ происходит в вакуолях.

Зерна, гранулы, капли
Функции: непостоянные образования, запасающие органические вещества и энергию

Ядро
. Ядерная оболочка из двух мембран, ядерный сок, ядрышко. Функции: хранение наследственной информации в клетке и ее воспроизводство, синтез РНК – информационной, транспортной, рибосомальной. В ядерной мембране находятся споры, через них осуществляется активный обмен веществами между ядром и цитоплазмой. В ядре хранится наследственная информация не только о всех признаках и свойствах данной клетки, о процессах, которые должны протекать к ней (например, синтез белка), но и о признаках организма в целом. Информация записана в молекулах ДНК, которые являются основной частью хромосом. В ядре присутствует ядрышко. Ядро, благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.