Измерительная техника. Определение электродвижущей силы и удельной термо-эдс термопары

9.1. Цель работы

Определение зависимости термоэлектродвижущей силы термопары от разности температур спаев.

В замкнутой цепи (рис. 9.1), состоящей из разнородных проводников (или полупроводников) А и В, возникает электродвижущая сила (э.д.с.) Е T и течет ток, если контакты 1 и 2 этих проводников поддерживаются при различных температурах T 1 и T 2 . Эта э.д.с. называется термоэлектродвижущей силой (термо-э.д.с), а электрическая цепь из двух разнородных проводников называется термопарой. При изменении знака разности температур спаев изменяется направление тока термопары. Это
явление называется явлением Зеебека .

Известны три причины возникновения термо-ЭДС: образование направленного потока носителей зарядов в проводнике при наличии градиента температур, увлечение электронов фононами и изменение положения уровня Ферми в зависимости от температуры. Рассмотрим эти причины подробнее.

При наличии градиента температуры dT / dl вдоль проводника электроны на горячем его конце обладают большей кинетической энергией, а значит и большей скоростью хаотического движения по сравнению с электронами холодного конца. В результате возникает преимущественный поток электронов от горячего конца проводника к холодному, на холодном конце накапливается отрицательный, а на горячем остается некомпенсированный положительный заряд.

Накопление продолжается до тех пор, пока возникшая разность потенциалов не вызовет равный поток электронов. Алгебраическая сумма таких разностей потенциалов в цепи создает объемную составляющую термо-э.д.с.

Помимо этого, имеющийся градиент температуры в проводнике приводит к возникновению преимущественного движения (дрейфа) фононов (квантов колебательной энергии кристаллической решетки проводника) от горячего конца к холодному. Существование такого дрейфа приводит к тому, что электроны, рассеиваемые на фононах, сами начинают совершать направленное движение от горячего конца к холодному. Накопление электронов на холодном конце проводника и обеднение электронами горячего конца приводит к возникновению фононной составляющей термо-э.д.с. Причем при низких температурах вклад этой составляющей является основным в возникновении термо-э.д.с.

В результате обоих процессов внутри проводника возникает электрическое поле, направленное навстречу градиенту температуры. Напряженность этого поля можно представить в виде

E = -dφ / dl = (-dφ / dT)· (-dt / dl)=-β·(-dT / dl)

где β = dφ / dT.

Соотношение (9.1) связывает напряженность электрического поля E с градиентом температуры dT / dl. Возникающее поле и градиент температуры имеют противоположные направления, поэтому они имеют разные знаки.

Определяемое выражением (9.1) поле является полем сторонних сил. Проинтегрировав напряженность этого поля по участку цепи АВ (рис 9.1) от спая 2 до спая 1 и предполагая, что T 2 > T 1 , получим выражение для термо-э.д.с, действующей на этом участке:



(Знак изменился при изменении пределов интегрирования.) Аналогично определим термо-э.д.с., действующую на участке В от спая 1 до спая 2.

Третья причина возникновения термо-э.д.с. заключается в зависимости от температуры положения уровня Ферми, который соответствует наивысшему энергетическому уровню, занятому электронами. Уровню Ферми соответствует энергия Ферми E F , которую могут иметь электроны на этом уровне.

Энергия Ферми - максимальная энергия, которую могут иметь электроны проводимости в металле при 0 К. Уровень Ферми будет тем выше, чем больше плотность электронного газа. Например (рис.9.2), E FA - энергия Ферми для металла A, а E FB - для металла В. Значения E PA и E PB - это наибольшая потенциальная энергия электронов в металлах А и В соответственно . При контакте двух разнородных металлов А и В наличие разности уровней Ферми (E FA > E FB) приводит к возникновению перехода электронов из металла А (с более высоким уровнем) в металл В (с низким уровнем Ферми).

При этом металл А заряжается положительно, а металл В отрицательно. Появление этих зарядов вызывает смещение энергетических уровней металлов, в том числе уровней Ферми. Как только уровни Ферми выравниваются, причина, вызывающая преимущественный переход электронов из металла А в металл В, исчезает, и между металлами устанавливается динамическое равновесие. Из рис. 9.2 видно, что потенциальная энергия электрона в металле А меньше, чем в В на величину E FA - E FB . Соответственно потенциал внутри металла А выше, чем внутри В, на величину)

U AB = (E FA - E FB) / l


Это выражение дает внутреннюю контактную разность потенциалов. На такую величину убывает потенциал при переходе из металла А в металл В. Если оба спая термопары (см. рис. 9.1) находятся при одной и той же температуре, то контактные разности потенциалов равны и направлены в противоположные стороны.

В этом случае они компенсируют друг друга. Известно что уровень Ферми хоть и слабо, но зависит от температуры. Поэтому, если температура спаев 1 и 2 различна, то разность U AB (T 1) - U AB (T 2) на контактах дает свой контактный вклад в термо-э.д.с. Он может быть сравним с объемной термо-э.д.с. и равен:

E конт = U AB (T 1) - U AB (T 2) = (1/l) · { + }

Последнее выражение можно представить следующим образом:

Результирующая термо-э.д.с. (ε T) слагается из э.д.с, действующих в контактах 1 и 2 и э.д.с, действующих на участках А и В.

E T = E 2A1 + E 1B2 + E конт

Подставив в (9.7) выражения, (9.3) и (9.6) и проводя преобразования, получим

где α = β - ((1/l) ·(dE F / dT))

Величина α называется коэффициентом термо-э.д.с. Так как и β и dE F / d T зависят от температуры, то коэффициент α тоже является функцией Т.

Приняв во внимание (9.9), выражение для термо-ЭДС можно представить в виде:


Величину α AB называют дифференциальной или удельной термо-ЭДС данной пары металлов. Измеряется она в В/К и существенно зависит от природы контактирующих материалов, а также интервала температур, достигая порядка 10 -5 ÷10 -4 В/К. В небольшом интервале температур (0-100°С) удельная термо-э.д.с. слабо зависит от температуры. Тогда формулу (9.11) можно с достаточной степенью точности представить в виде:

E T = α · (T 2 - T 1)

В полупроводниках, в отличие от металлов, существует сильная зависимость концентрации носителей зарядов и их подвижности от температуры. Поэтому рассмотренные выше эффекты, приводящие к образованию термо-э.д.с, выражены в полупроводниках сильнее, удельная термо-э.д.с. значительно больше и достигает значений порядка 10 -3 В/К.

9.3. Описание лабораторной установки

Для изучения зависимости термо-э.д.с. от разности температур спаев (контактов) в настоящей работе используется термопара, изготовленная из двух отрезков проволоки, один из которых является сплавом на основе хрома (хромель), а другой сплавом на основе алюминия (алюмель). Один спай вместе с термометром помещен в сосуд с водой, температура T 2 которой может изменяться путем нагрева на электроплитке. Температура другого спая T 1 поддерживается постоянной (рис.9.3). Возникающая термо-э.д.с. измеряется цифровым вольтметром.

9.4. Методика проведения эксперимента и обработка результатов
9.4.1. Методика эксперимента

В работе используются прямые измерения возникающей в термопаре э.д.с. Температура спаев определяется по температуре воды в сосудах с помощью термометра (см. рис. 9.3)

9.4.2. Порядок выполнения работы

  1. Включите сетевой шнур вольтметра в сеть.
  2. Нажмите кнопку сеть на передней панели цифрового вольтметра. Дайте про греться прибору в течении 20 минут.
  3. Отпустите винт зажима на стойке термопары, поднимите ее вверх и закрепите. Налейте в оба стакана холодную воду. Отпустите спаи термопары в стаканы приблизительно на половину глубины воды.
  4. Запишите в табл. 9.1 значение начальной температуры T 1 спаев (воды) по термометру (для другого спая она остается постоянной в течение всего эксперимента).
  5. Включите электроплитку.
  6. Записывайте значения э.д.с. и температуры T 2 в табл. 9.1 через каждые десять градусов.
  7. При закипании воды выключите электроплитку и вольтметр.

9.4.3. Обработка результатов измерений

  1. По данным измерений постройте график зависимости э.д.с. термопары 8Т (ось ординат) от разности температур спаев ΔT = T 2 - T 1 (ось абсцисс).
  2. Пользуясь полученным графиком линейной зависимости Е T от ∆T, определите удельную термо-э.д.с. по формуле: α = ΔE T / Δ(ΔT)

9.5. Перечень контрольных вопросов
  1. В чем состоит сущность и какова природа явления Зеебека?
  2. Чем обусловлено возникновение объемной составляющей термо-э.д.с?
  3. Чем обусловлено возникновение фононной составляющей термо-э.д.с?
  4. Чем обусловлено возникновение контактной разности потенциалов?
  5. Какие устройства называются термопарами и где они применяются?
  6. В чем состоит сущность и какова природа явлений Пельтье и Томсона?
  1. Савельев И. В. Курс общей физики. Т.3. - М.: Наука, 1982. -304 c.
  2. Епифанов Г. И. Физика твердого тела. М.: Высшая школа, 1977. - 288 с.
  3. Сивухин Д. В. Общий курс физики. Электричество. Т.3. - М.: Наука, 1983. -688 c.
  4. Трофимова Т. И. Курс физики. М. : Высшая школа, 1985. - 432 с.
  5. Детлаф А. А., Яворский В. М. Курс физики. М. : Высшая школа, 1989. - 608 с.

Термоэлектрические преобразователи. Принцип действия, применяемые материалы.

Тепловым называется преобразователь, принцип действия которого основан на тепловых процессах и естественной входной величиной которого является температура. К таким преобразователям относятся термопары и терморезисторы, металлические и полупроводниковые. Основным уравнением теплового преобразования является уравнение теплового баланса, физический смысл которого заключается в том, что все тепло, поступающее к преобразователю, идет на повышение его теплосодержания QТС и, следовательно, если теплосодержание преобразователя остается неизменным (не меняется температура и агрегатное состояние), то количество поступающего в единицу времени тепла равно количеству отдаваемого тепла. Тепло, поступающее к преобразователю, является суммой количества тепла Qэл, создаваемого в результате выделения в нем электрической мощности, и количества тепла Qто, поступающего в преобразователь или отдаваемого им в результате теплообмена с окружающей средой.

Явление термоэлектричества было открыто в 1823 г. Зеебеком и заключается в следующем. Если составить цепь из двух различных проводников (или полупроводников) А и В, соединив их между собой концами (рис. 1.), причем температуру 1 одного места соединения сделать отличной от температуры о другого, то в цепи появится э.д.с., называемая термоэлектродвижущей силой (термо-э.д.с.) и представляющая собой разность функций температур, мест соединения проводников.

Подобная цепь называется термоэлектрическим преобразователем или иначе термопарой ; проводники, составляющие термопару, - термоэлектродами, а места их соединения - спаями.

Рис.1.

При небольшом перепаде температур между спаями термо-э.д.с. можно считать пропорциональной разности температур.

Опыт показывает, что у любой пары однородных проводников подчиняющихся закону Ома, величина термо-э.д.с. зависит только от природы проводников и от температуры спаев и не зависит от распределения температур между спаями.

Действие термопары основано на эффекте Зеебека. Эффект Зеебека основывается на следующих явлениях. Если вдоль проводника существует градиент температур, электроны на горячем конце добывают высшие энергии и скорости, чем на холодном. В итоге возникает поток электронов от горячего конца к холодному, и на холодном конце накапливается негативный заряд, а на горячем остается некомпенсированный позитивный заряд. Поскольку средняя энергия электронов зависит от природы проводника и по-разному растет с температурой, при той же разнице температур термо-ЭДС на концах разных проводников будут отличаться:

E1 = k1(T1 - T2); e2 = k2(T1 - T2)

Где Т1 и Т2 - температуры горячего и холодного концов соответственно; k1 и k2 –коэффициенты, что зависят от физических свойств соответственно 1-го и 2-го проводников. Результирующая разница потенциалов называется объемной термо-ЕРС:

Eоб = e1 - e2 = (k1 - k2)(T1 - T2).

В местах спайки разнородных проводников появляется контактная разница потенциалов, которая зависит от площади и материалов прилегающих поверхностей и пропорциональная их температуре:

Ek1 = kповT1; ek2 = kповT2

Где kпов - коэффициент поверхностей касательных металлов. В итоге появляется вторая составляющая исходного напряжения - контактная термо-ЕРС:

Ek = ek1 - ek2 = kпов(T1 - T2)

Напряжение на выходе термопары определяется как сумма объемной и контактной термо-ЭДС:

Uвих = eоб + ek = (k1 - k2 + kпов)(T1 - T2) = к(T1 - T2)

Где к - коэффициент передачи.

Недостатки термопары:

Малая чувствительность (порядку 0,1 мВ/°К);
- высокое исходное сопротивление;
- необходимость поддержки постоянной температуры одного из концов.

Явление термоэлектричества принадлежит к числу обратимых явлений, обратный эффект был открыт в 1834 г. Жаном Пельтье и назван его именем.
Если через цепь, состоящую из двух различных проводников или полупроводников, пропустить электрический ток, то тепло выделяется в одном спае и поглощается в другом. Теплота Пельтье связана с силой тока линейной зависимостью в отличие от теплоты Джоуля, и в зависимости от направления тока происходит нагревание или охлаждение спая.
Поглощаемая или выделяемая тепловая мощность пропорциональна силе тока, зависит от природы материалов, образующих спай, характеризуется коэффициентом Пельтье.

К.п.д. термоэлектрического генератора зависит от разности температур и свойств материалов и для существующих материалов очень мал (при = 300° не превышает = 13%, а при = 100° значение = 5%), поэтому термоэлектрические генераторы используются как генераторы энергии лишь в специальных условиях. К.п.д. термоэлектрического подогревателя и холодильника также очень малы, и для охлаждения к.п.д. при температурном перепаде 5° составляет 9%, а при перепаде 40° - только 0,6%; однако, несмотря на столь низкие к.п.д., термоэлементы используются в холодильных устройствах. В измерительной технике термопары получили широкое распространение для измерения температур; кроме того, полупроводниковые термоэлементы используются как обратные тепловые преобразователи, преобразующие электрический ток в тепловой поток и температуру.

Термопара с подключенным к ней милливольтметром, применяемая для измерения температуры.
Если один спай термопары, называемый рабочим, поместить в среду с температурой 1, подлежащей измерению, а температуру 2, других, нерабочих, спаев поддерживать постоянной, то f(0) = const и EAB(1) = f(1) – C= f1(1). независимо от того, каким образом произведено соединение термоэлектродов (спайкой, сваркой и т. д.). Таким образом, естественной входной величиной термопары является температура ее рабочего спая, а выходной величиной - термо-э. д. с., которую термопара развивает при строго постоянной температуре 2 нерабочего спая.

Материалы, применяемые для термопар. В табл. 1 приведены термо-э.д.с., которые развиваются различными термоэлектродами в паре с платиной при температуре рабочего спая 1 = 100°С и температуре нерабочих спаев 2 = 0° С. Зависимость термо-э.д.с. от температуры в широком диапазоне температур обычно нелинейна, поэтому данные таблицы нельзя распространить на более высокие температуры.

Таблица 1.

Материал

Термо-эдс, мВ

Материал

Термо-эдс, мВ

Алюминий

Молибден

Палладий

Вольфрам

Манганин

Константан

Молибден

При пользовании данными таблицы следует иметь в виду, что развиваемые термоэлектродами термо-э.д.с. в значительной степени зависят от малейших примесей, механической обработки (наклеп) и термической обработки (закалка, отжиг).

При конструировании термопар, естественно, стремятся сочетать термо-электроды, один из которых развивает с платиной положительную, а другой - отрицательную термо-э.д.с. При этом необходимо учитывать также пригодность того или иного термоэлектрода для применения в заданных условиях измерения (влияние на термоэлектрод среды, температуры и т. д.).
Для повышения выходной э.д.с. используется несколько термопар, образующих термобатарею. Рабочие спаи термопар расположены на черненом лепестке, поглощающем излучение, холодные концы - на массивном медном кольце, служащем теплоотводом и прикрытым экраном. Благодаря массивности и хорошей теплоотдаче кольца температуру свободных концов можно считать постоянной и равной комнатной.

Погрешности и поправки измерений термопарой.

Измерительный прибор или электронную измерительную систему подключают либо к концам термоэлектродов (рис. 2,а), либо в разрыв одного из них (рис. 2,б).

Рис.2 Подключение измерительного прибора к термопаре

Погрешность, обусловленная изменением температуры нерабочих спаев термопары. Градуировка термопар осуществляется при температуре нерабочих спаев, равной нулю. Если при практическом использовании термоэлектрического пирометра температура нерабочих спаев будет отличаться от 0° С на величину 0, то необходимо ввести соответствующую поправку в показания термометра.

Однако следует иметь в виду, что из-за нелинейной зависимости между э.д.с. термопары и температурой рабочего спая величина поправки к показаниям указателя, градуированного непосредственно в градусах, не будет равна разности температур 0 свободных концов.
Величина поправки связана с разностью температур свободных концов через коэффициент k называемый поправочным коэффициентом на температуру нерабочих концов. Величина k различна для каждого участка кривой, поэтому градировочную кривую разделяют на участки по 100° С и для каждого участка определяют значение k.

Недостатком подобных устройств является необходимость в источнике тока для питания моста и появление дополнительной погрешности, обусловленной изменением напряжения этого источника.

Погрешность, обусловленная изменением температуры линии, термопары и указателя. В термоэлектрических термометрах для измерения термо-э.д.с. применяют как обычные милливольтметры, так и низкоомные компенсаторы с ручным или автоматическим уравновешиванием на предел измерения до 100 мВ.

В тех случаях, когда термо-э.д.с. измеряется компенсатором, сопротивление цепи термо-э.д.с., как известно, роли не играет. В тех же случаях, когда термо-э.д.с. измеряется милливольтметром, может возникнуть погрешность, обусловленная изменением сопротивлений всех элементов, составляющих цепь термо-э.д.с.; поэтому необходимо стремиться к постоянному значению сопротивления проводов и самой термопары

Промышленные термопары

Основные параметры термопар промышленного типа:

Таблица 2

Обозначение термопары

Обозначение термоэлектродов

Материалы

Пределы измерения при длительном применении

Верхний предел измерений при кратковременном применении

Платинородий (10% родия) платина

От -20 до 1300

Платинородий (30% родия)

Хромель-алюмель

Хромель-копель

Для измерения температур ниже - 50° С могут найти применение специальные термопары, например медь - константан (до ~- 270° С), медь - копель (до - 200° С) и т. д. Для измерения температур выше 1300-1800° С изготавливаются термопары на основе тугоплавких металлов: иридий-ренийиридий (до 2100° С), вольфрам-рений (до 2500° С), на основе карбидов переходных металлов - титана, циркония, ниобия, талия, гафния
(теоретически до 3000-3500° С), на основе углеродистых и графитовых волокон.
Градуировочные характеристики термопар основных типов приведены в табл. 3. В этой таблице указана температура рабочего спая в градусах
Цельсия и приведены величины термо-э.д.с. соответствующих термопар в милливольтах при температуре свободных концов 0° С.

Таблица 3

Обозначение градуировки

Температура рабочего спая

12.2, 16.40, 20.65, 24.91, 33.32, 41.26, 48.87

2.31, 3.249, 4.128, 5.220, 7.325, 9.564, 11.92, 14.33, 16.71

4.913, 6.902, 9.109, 11.47, 13.92

Допускаются отклонения реальных термо-э.д.с. от значений, приведенных в табл. 3, на величины, указанные в табл. 4.

Таблица 4

Конструкция термопары промышленного типа . Это термопара с термоэлектродами из неблагородных металлов, расположенными в составной защитной трубе с подвижным фланцем для ее крепления. Рабочий спай термопары изолирован наконечником. Термоэлектроды изолированы брусами. Защитная труба состоит из рабочего и нерабочего участков. Передвижной фланец крепится к трубе винтом. Головка термопары имеет литой корпус с крышкой, закрепленной винтами; В головке укреплены фарфоровые колодки (винтами) плавающими (незакрепленными) зажимами, которые позволяют термоэлектродам удлиняться под воздействием температуры без возникновения механических напряжений, ведущих к быстрому разрушению термоэлектродов. Термоэлектроды крепятся к этим зажимам винтами, а соединительные провода - винтами. Эти провода проходят через штуцер с асбестовым уплотнением.

Для термопар из благородных металлов часто применяют неметаллические трубы (кварцевые, фарфоровые и т. д.), однако такие трубы механически непрочны и дороги. Фарфоровые трубы надлежащего состава можно использовать при температурах до 1300- 1400°С.
В качестве изоляции термоэлектродов друг от друга применяют асбест до 300° С, кварцевые трубки или бусы до 1000° С, фарфоровые трубы 1300 С. Для лабораторных термопар, используемых при измерении низких температур, применяют также теплостойкую резину до 150° С, шелк до 100-120°С, эмаль до 150-200 °С.

Методы контактных электроизмерений средних и высоких температур с помощью термопар

Средними в термометрии считаются температуры от 500 (начало свечения) до 1600 °С (белое каление), а высокими- от 1600 до 2500°С, до которых удается распространить термоэлектрический метод с использованием высокотемпературных, жаростойких материалов.
Принцип термоэлектрического метода и основные свойства термоэлектродов были рассмотрены выше в п. 1. Основным вопросом при использовании этого метода для измерения средних и высоких температур является защита термоэлектродов от разрушающего химического и термического воздействия среды. Для этого термопары снабжаются защитной арматурой в виде чехлов, трубок или колпачков из огнеупорных материалов. Главное требование к защитной оболочке - высокая плотность строения и температурная стойкость.

При измерении температур ниже 1300 °С используются фарфоровые чехлы, при более высоких температурах - колпачки из тугоплавких материалов (такие, как корунд, окиси алюминия, бериллия или тория), заполненные инертным газом.

Зависимость срока службы термопар от пористости защитной оболочки.

При измерении температуры поверхности тел особенную трудность составляет контакт рабочего спая термопары с поверхностью нагретого тела.
Для улучшения контакта используются термопары, рабочий спай которых выполнен в виде ленты или пластины. Такая конфигурация рабочего спая при деформации позволяет воспроизводить поверхность объекта измерения.

Для измерения температур до 2000-2500 °С используются вольфрамовые или иридиевые термопары. Особенностью их применения является измерение в вакууме, в инертной или восстановительной средах, так как на воздухе они окисляются. Чувствительность вольфрамомолибденовой термопары составляет 7 мкВ/К, а вольфрамо-рениевой 13 мкВ/К.
В условиях высоких температур применяются термопары из огнеупорных материалов (пары карбид титана - графит, карбид циркония - борид циркония и дисилицид молибдена - дисилицид вольфрама). В таких термопарах внутри цилиндрического электрода (диаметр около 15 мм) имеется второй электрод-стержень, соединенный с первым электродом на одном конце трубки.

Чувствительность термопар из огнеупорных материалов достигает 70 мкВ/К, однако их применение ограничено инертными и восстановительными средами.
Для измерения температуры расплавленного металла термопарами из благородных металлов используется метод, заключающийся в погружении термопары в металл на время, безопасное для ее работоспособности. При этом термопара на короткое время (0,4-0,6 с) погружается в контролируемую среду, и измеряется скорость нарастания температуры рабочего спая. Зная зависимость между скоростью нагрева термопары (ее тепловую инерционность) и температурной среды, можно рассчитать значение измеряемой температуры. Этот метод применяется для измерения расплавленного металла (2000-2500 С) и газового потока (1800 С).

Термопара (термоэлектрический преобразователь) - устройство, применяемое для измерения температуры в промышленности, научных исследованиях, медицине, в системах автоматики.

Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей потенциалов равна нулю. Когда же стыки находятся при разных температурах, разность потенциалов между ними зависит от разности температур. Коэффициент пропорциональности в этой зависимости называют коэффициентом термо-ЭДС. У разных металлов коэффициент термо-ЭДС разный и, соответственно, разность потенциалов, возникающая между концами разных проводников, будет различная. Помещая спай из металлов с отличными от нуля коэффициентами термо-ЭДС в среду с температурой Т 1 , мы получим напряжение между противоположными контактами, находящимися при другой температуре Т 2 , которое будет пропорционально разности температур Т 1 и Т 2 .

Преимущества термопар

  • Высокая точность измерения значений температуры (вплоть до ±0,01 °С).
  • Большой температурный диапазон измерения: от −250 °C до +2500 °C.
  • Простота.
  • Дешевизна.
  • Надёжность
  • Для получения высокой точности измерения температуры (до ±0,01 °С) требуется индивидуальная градуировка термопары.
  • На показания влияет температура свободных концов, на которую необходимо вносить поправку. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового датчика и автоматическое введение поправки к измеренной ТЭДС.
  • Эффект Пельтье (в момент снятия показаний необходимо исключить протекание тока через термопару, так как ток, протекающий через неё, охлаждает горячий спай и разогревает холодный).
  • Зависимость ТЭДС от температуры существенно нелинейна. Это создает трудности при разработке вторичных преобразователей сигнала.
  • Возникновение термоэлектрической неоднородности в результате резких перепадов температур, механических напряжений, коррозии и химических процессов в проводниках приводит к изменению градуировочной характеристики и погрешностям до 5 К.
  • На большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

Технические требования к термопарам определяются ГОСТ 6616-94. Стандартные таблицы для термоэлектрических термометров (НСХ), классы допуска и диапазоны измерений приведены в стандарте МЭК 60584-1,2 и в ГОСТ Р 8.585-2001.

  • платинородий-платиновые - ТПП13 - Тип R
  • платинородий-платиновые - ТПП10 - Тип S
  • платинородий-платинородиевые - ТПР - Тип B
  • железо-константановые (железо-медьникелевые) ТЖК - Тип J
  • медь-константановые (медь-медьникелевые) ТМКн - Тип Т
  • нихросил-нисиловые (никельхромникель-никелькремниевые) ТНН - Тип N.
  • хромель-алюмелевые - ТХА - Тип K
  • хромель-константановые ТХКн - Тип E
  • хромель-копелевые - ТХК - Тип L
  • медь-копелевые - ТМК - Тип М
  • сильх-силиновые - ТСС - Тип I
  • вольфрам и рений - вольфрамрениевые - ТВР - Тип А-1, А-2, А-3

Для использования онлайн калькулятора в поле «Термо-ЭДС (мВ)» необходимо ввести значение термо-ЭДС термопары, так же следует учитывать, что температура будет отображаться без учета температуры окружающей среды. Для удобства пользования онлайн калькулятором в поле «Температура окруж. среды» необходимо ввести температуру окружающей среды в °С и все показания будут с утечем температуры окружающей среды.

Онлайн калькулятор перевода термо-ЭДС в температуру (°С) для термопары типа хромель-алюмель — ТХА — Тип K.

Онлайн калькулятор

типа хромель-алюмель — ТХА — Тип K.

Онлайн калькулятор перевода термо-ЭДС в температуру (°С) для термопары типа

хромель-копель — ТХK — Тип L.

Онлайн калькулятор перевода температуры (°С) в термо-ЭДС (мВ) для термопары

типа хромель-копель — ТХK — Тип L.

При подсчете температуры следует учитывать следующую особенность, что температура T=Tтерм(мВ)+Tокруж(мВ) >°С, а выражение T=Tтерм(мВ) >°С + Tокруж(°С) является не правильным , поэтому конвертер температуры преобразует окружающую температуру в мВ, прибавляет ее к показаниям термопары и только после этого преобразует мВ в °С.

Онлайн калькулятор перевода температуры (°С) в термо-ЭДС (мВ) для термопары

типа родий-платина — ТПП — Тип R.

Онлайн калькулятор перевода температуры (°С) в термо-ЭДС (мВ) для термопары

типа родий-платина — ТПП — Тип S.

Онлайн калькулятор перевода температуры (°С) в термо-ЭДС (мВ) для термопары

типа родий-платина —ТПР — Тип B.

Онлайн калькулятор перевода температуры (°С) в термо-ЭДС (мВ) для термопары

типа железо — константан — ТЖК - Тип J.

Онлайн калькулятор перевода температуры (°С) в термо-ЭДС (мВ) для термопары

типа медь — константан — ТМК - Тип T.

Онлайн калькулятор перевода температуры (°С) в термо-ЭДС (мВ) для термопары

типа хромель — константан — ТХКн - Тип E.

Онлайн калькулятор перевода температуры (°С) в термо-ЭДС (мВ) для термопары

типа нихросил — нисил — ТНН - Тип N.

Онлайн калькулятор перевода температуры (°С) в термо-ЭДС (мВ) для термопары

типа вольфрам — рений — ТВР A-1, A-2, A-3.

Онлайн калькулятор перевода температуры (°С) в термо-ЭДС (мВ) для термопары

типа медь — копель — ТМК - Тип M.

Приборы для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM Sensor Lab предназначены для измерений термо-ЭДС, поступающих от первичных преобразователей термоэлектрических, измеряющих температуру жидких металлов (чугуна, стали, меди и других) и ЭДС, генерируемой датчиками активности кислорода.

Описание

Принцип действия

Подаваемые на «измерительный» вход прибора для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM2 Sensor Lab сигналы термо-ЭДС от первичного преобразователя термоэлектрического (термопары) и ЭДС от датчиков активности кислорода (мВ) преобразуются в цифровую форму и по соответствующей программе пересчитываются в значения температуры и активности кислорода. Эти сигналы воспринимаются тактами частотой до 250 c-1. Прибор имеет 4 входа: Ch0 и Ch2 - для измерений сигналов от термопар, и Ch1, Ch3 - для измерений сигналов ЭДС от датчиков активности кислорода.

В процессе измерений температуры, производится анализ изменения поступающего входного сигнала с целью определения его выхода на стабильные показания (характеризуется параметрами так называемой "температурной площадки", определяемой длиной (временем) и высотой (изменением температуры). Если за время, заданное длиной площадки, фактическое изменение температуры не превышает её заданной высоты (т.е. допускаемого изменения температуры), то площадка считается выделенной. Далее прибор для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM Sensor Lab усредняет тактовые значения температуры, измеренные на длине выделенной площадки, и выводит среднее значение как результат измерений на экран.

Аналогичным образом выделяются площадки, соответствующие выходу ЭДС на стабильные показания, размеры которых также задаются длиной (временем) и высотой (допускаемым изменением величины ЭДС).

Помимо измерений температуры ванны, прибор позволяет определять температуру ликвидус жидкой стали, которая может быть пересчитана по эмпирическому уравнению в содержание углерода. По результатам измерений ЭДС, генерируемой датчиками активности кислорода, расчётным путём определяется активность кислорода в жидкой стали, чугуне и меди, содержание углерода в стали, содержание серы и кремния в чугуне, активность FeO (FeO+MnO) в жидких металлургических шлаках и некоторые другие параметры, связанные с термическим состоянием и химическим составом жидких металлов. Прибор также имеет возможность определять уровень ванны (положение границы шлак металл) путём анализа скорости изменений температуры при погружении термопары в ванну и определения толщины слоя шлака специальными зондами.

Приборы для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM2 Sensor Lab имеют две модификации, которые отличаются наличием или отсутствием сенсорного ЖK экрана (рисунок 1). При отсутствии экрана, управление прибором производится с внешнего компьютера или с промышленного планшета. В этом случае поставляется специальное программное обеспечения для осуществления связи между ними.

Сенсорный экран находится на передней панели корпуса прибора и на нём в цифровой и графической формах отображаются ход измерений, его результаты и другая информация, касающаяся измерений. На экран также выводится меню в виде текстовых закладок, с помощью которого производится управление прибором, его диагностика и просмотр данных о выполнен-

Лист № 2 Всего листов 4

ных ранее измерениях. В модификации «без экрана» вся вышеперечисленная информация отображается на экране компьютера или промышленного планшета.

Электронные платы прибора для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM2 Sensor Lab устанавливаются в пылезащищённом стальном корпусе, выполненному по стандарту 19” для установки на монтажной стойке или крепления в щите.

Сигналы с первичных преобразователей могут передаваться на прибор двумя способами - по кабелю и по радио. В последнем случае прибор соединяется с принимающем блоком (Reciver Box) по последовательному интерфейсу, а на рукоятке погружных жезлов устанавливается передающее устройство (QUBE), которое преобразует сигналы, поступающие с датчиков, в радиосигналы, передающиеся на принимающий блок. Последний принимает их и передаёт в прибор для обработки.

Пломбирование прибора не предусмотрено.

Программное обеспечение

Инсталляция программного обеспечения (ПО) осуществляется на предприятии изготовителе. Доступ к метрологически значимой части ПО невозможен.

Конструкция СИ исключает возможность несанкционированного влияния на ПО средства измерений и измерительную информацию.

Уровень защиты встроенного ПО от непреднамеренных и преднамеренных изменений

Высокий по Р 50.2.077-2014.

Технические характеристики

Метрологические и технические характеристики приборов для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM2 Sensor Lab приведены в таблице 1. Таблица 1

* - без учета погрешности первичного преобразователя, удлиняющего кабеля и датчика ЭДС.

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульный лист эксплуатационной документации типографским способом и на лицевую панель прибора методом офсетной печати.

Комплектность

Комплектность средства измерения приведена в таблице 2. Таблица 2

Поверка

осуществляется по МП РТ 2173-2014 «Приборы для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM2 Sensor Lab. Методика поверки», утверждённой ГЦИ СИ ФБУ «Ростест-Москва» 26.10.2014г.

Основные средства поверки приведены в таблице 3. Таблица 3

Сведения о методах измерений

Сведения о методах измерений содержатся в руководстве по эксплуатации.

Нормативные и технические документы, устанавливающие требования к приборам для измерений температуры жидких металлов и ЭДС датчиков активности кислорода iM2 Sensor Lab

1 Техническая документация изготовителя Heraeus Electro-Nite GmbH & Co. KG.

2 ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия».

3 ГОСТ Р 8.585-2001 «ГСП. Термопары. Номинальные статические характеристики преобразования».

4 ГОСТ 8.558-2009 «ГСП. Государственная поверочная схема для средств измерений температуры».

при выполнении работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании.

Министерство образования и науки РФ

Федеральное агентство по образованию

Саратовский государственный

технический университет

Измерение электродных

потенциалов и ЭДС

Методические указания

по курсу «Теоретическая электрохимия»

для студентов специальности

направление 550800

Электронное издание локального распределения

Одобрено

редакционно-издательским

советом Саратовского

государственного

технического университета

Саратов - 2006

Все права на размножение и распространение в любой форме остаются за разработчиком.

Нелегальное копирование и использование данного продукта запрещено.

Составители:

Под редакцией

Рецензент

Научно-техническая библиотека СГТУ

Регистрационный номер 060375-Э

© Саратовский государственный

технический университет, 2006

Введение

Одним из фундаментальных понятий электрохимии являются понятия электрохимического потенциала и ЭДС электрохимической системы. Величины электродных потенциалов и ЭДС связаны с такими важными характеристиками растворов электролитов как активность (a), коэффициент активности (f), числа переноса (n+, n-). Измерив потенциал и ЭДС электрохимической системы, можно рассчитать a, f, n+, n - электролитов.

Целью методических указаний является ознакомление студентов с теоретическими представлениями о причинах возникновения скачков потенциала между электродом и раствором, с классификацией электродов, овладение теоретическими основами компенсационного метода измерения электродных потенциалов и ЭДС, применение этого метода для расчета коэффициентов активности и чисел переноса ионов в растворах электролитов.


Основные понятия

При погружении металлического электрода в раствор на границе раздела возникает двойной электрический слой и, следовательно, появляется скачок потенциала.

Возникновение скачка потенциала вызывается различными причинами. Одна из них – обмен заряженными частицами между металлом и раствором. При погружении металла в раствор электролита ионы металла, покидая кристаллическую решетку и переходя в раствор, приносят в него свои положительные заряды, в то время как поверхность металла, на которой остается избыток электронов, заряжается отрицательно.

Другой причиной возникновения потенциалов является избирательная адсорбция анионов из водного раствора соли на поверхности какого-либо инертного металла. Адсорбция приводит к появлению избыточного отрицательного заряда на поверхности металла и, далее, к появлению избыточного положительного заряда в ближайшем слое раствора.

Третья возможная причина - способность полярных незаряженных частиц ориентированно адсорбироваться вблизи границы раздела фаз. При ориентированной адсорбции один из концов диполя полярной молекулы обращен к границе раздела, а – другой, в сторону той фазы, к которой принадлежит данная молекула.

Измерить абсолютную величину скачка потенциала на границе электрод-раствор невозможно. Но можно произвести измерение ЭДС элемента, составленного из исследуемого электрода и электрода, потенциал которого условно принят за нуль. Полученная таким способом величина называется «собственным» потенциалом металла – E.

В качестве электрода, равновесный потенциал которого принят условно за нуль, служит стандартный водородный электрод.

Равновесным потенциалом называется потенциал, характеризующийся установившееся равновесие между металлом и раствором соли. Установление равновесного состояния не означает, что в электрохимической системе совсем не протекают никакие процессы. Обмен ионами между твердой и жидкой фазами продолжается, но скорости таких переходов становятся равными. Равновесие на границе металл-раствор соответствует условию

i К = i А =i О , (1)

где i К – катодный ток;

i О ток обмена.

Для измерения потенциала исследуемого электрода могут применяться и другие электроды, потенциал которых относительно водородного стандартного электрода известен, - электроды сравнения.

Основными требованиями, предъявляемые к электродам сравнения – постоянство скачка потенциала, хорошая воспроизводимость результатов. Примерами электродов сравнения являются электроды второго рода: каломельный:

Cl - / Hg 2 Cl 2 , Hg

Хлорсеребряный электрод:

Cl - / AgCl, Ag

ртутносульфатный электрод и другие. В таблице приведены потенциалы электродов сравнения (по водородной шкале).

Потенциал любого электрода – E, определяется при заданных температуре и давлении величиной стандартного потенциала и активностями веществ, участвующих в электродной реакции.


Если в электрохимической системе обратимо протекает реакция

υAA+υBB+…+.-zF→υLL+υMM

то https://pandia.ru/text/77/491/images/image003_83.gif" width="29" height="41 src=">ln а Cu2+ (5)

Электроды второго рода - это металлические электроды, покрытые малорастворимой солью этого металла и опущенные в раствор хорошо растворимой соли, имеющей общий анион с малорастворимой солью: примером может служить хлорсеребряный, каломельный электроды и др.

Потенциал электрода второго рода, например, хлорсеребряного электрода, описывается уравнением

EAg, AgCl/Cl-=E0Ag, AgCl/Cl-ln aCl - (6)

Окислительно-восстановительный электрод - это электрод, изготовленный из инертного материала и погруженный в раствор, содержащий какое-либо вещество в окисленной и восстановленной формах.

Различают простые и сложные окислительно-восстановительные электроды.

В простых окислительно-восстановительных электродах наблюдается изменение валентности заряда частицы, но химический состав остается постоянным.

Fe3++e →Fe2+

MnO-4+e→MnO42-

Если обозначить окисленные ионы через Ox, а восстановленные –через Red, то все написанное выше реакции можно выразить одним общим уравнением

Ox + e →Red

Простой редокси-электрод записывается в виде схемы Red , Ox / Pt , а его потенциал дается уравнением

E Red, Ox=E0 Red, Ox+https://pandia.ru/text/77/491/images/image005_58.gif" width="29" height="41 src=">ln (8)

Разность потенциалов двух электродов при выключенной внешней цепи называется электродвижущей силой (ЭДС) (E) электрохимической системы.

E = E + - E - (9)

Электрохимическая система, состоящая из двух одинаковых электродов, погруженных в раствор одного и того же электролита разной концентрации, называется концентрационным элементом.

ЭДС в таком элементе возникает за счет разности концентраций растворов электролита.

Методика эксперимента

Компенсационный метод измерения ЭДС и потенциала

Приборы и принадлежности: потенциометр Р-37/1, гальванометр, батарея аккумуляторов, элементы Вестона, угольный, медный, цинковый-электроды, растворы электролитов, хлорсеребряный электрод сравнения, электролитический ключ, электрохимическая ячейка.

Собрать схему установки (рис.2)

э. я. – электрохимическая ячейка;

э. и. – исследуемый электрод;

э. с. – электрод сравнения;

э. к. – электролитический ключ.

DIV_ADBLOCK84">

концентрации ионов CrO42- и H+ постоянны и равны 0,2 г-ион/л и 3-ион/л концентрация H+ меняется и составляет: 3; 2; 1; 0,5; 0,1 г-ион/л;

концентрация ионов CrO42-, Cr3+ постоянны и равны 2 г-ион/л и 0,1 г-ион/л соответственно, концентрация ионов H+ меняется и составляет: 2; 1; 0,5; 0,1; 0,05; 0,01 г-ион/л.

Задание 4

Измерение потенциала простой окислительно-восстановительной системы Mn+7, Mn2+ графит.

концентрация иона Mn2+ постоянна и равна 0,5 г-ион/л

концентрация ионов MnO2-4 меняется и составляет 1; 0,5; 0,25; 0,1; 0,01 г-ион/л;

концентрация ионов MnO-4 постоянна и равна 1 г-ион/л

концентрация ионов Mn2+ vменяется и составляет: 0,5; 0,25; 0,1; 0,05; 0,001 г-ион/л.

Обработка экспериментальных данных

1.Все полученные экспериментальные данные необходимо перевести на водородную шкалу.

3.Построить графическую зависимость потенциала от концентрации в координатах E, lgC, сделать вывод о характере влияния концентрации потенциалопределяющих ионов на величину потенциала электрода.

4.Для концентрационных элементов (задание 2) рассчитать диффузионный скачок потенциала φα по уравнению

φα = (10)

при измерении ЭДС компенсационным методом

1. Потенциометр должен быть перед работой заземлён.

2. При работе с аккумуляторами необходимо:

Использовать для проверки напряжения на клеммах переносным вольтметром;

При сборке аккумуляторов в батарею избегать замыкания корпуса и клемм во избежание получения сильного ожога.

3. После работы все приборы выключить.

Литература

1. Антропов электрохимия:

учебник / .- 2 изд. перераб. доп.-М.: Высшая школа, 1984.-519с.

2.-Ротинян электрохимия: учебник/ ,

Л.: Химия, с.

3. Дамаский / , .- М.: Высшая школа, 1987.-296с.