Një rast i veçantë i sinusit 0. Ekuacionet trigonometrike. Futja e këndit ndihmës

Ju mund të porosisni një zgjidhje të detajuar për problemin tuaj!!!

Një barazi që përmban një të panjohur nën shenjën e një funksioni trigonometrik (`sin x, cos x, tan x` ose `ctg x`) quhet ekuacion trigonometrik, dhe janë formulat e tyre që do të shqyrtojmë më tej.

Ekuacionet më të thjeshta janë `sin x=a, cos x=a, tg x=a, ctg x=a`, ku `x` është këndi që duhet gjetur, `a` është çdo numër. Le të shkruajmë formulat rrënjësore për secilën prej tyre.

1. Ekuacioni `sin x=a`.

Për `|a|>1` nuk ka zgjidhje.

Kur `|a| \leq 1` ka një numër të pafund zgjidhjesh.

Formula e rrënjës: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Ekuacioni `cos x=a`

Për `|a|>1` - si në rastin e sinusit, ai nuk ka zgjidhje midis numrave realë.

Kur `|a| \leq 1` ka një numër të pafund zgjidhjesh.

Formula e rrënjës: `x=\pm arccos a + 2\pi n, n \in Z`

Raste të veçanta për sinusin dhe kosinusin në grafikë.

3. Ekuacioni `tg x=a`

Ka një numër të pafund zgjidhjesh për çdo vlerë të `a`.

Formula e rrënjës: `x=arctg a + \pi n, n \in Z`

4. Ekuacioni `ctg x=a`

Gjithashtu ka një numër të pafund zgjidhjesh për çdo vlerë të `a`.

Formula e rrënjës: `x=arcctg a + \pi n, n \in Z`

Formulat për rrënjët e ekuacioneve trigonometrike në tabelë

Për sinusin:
Për kosinusin:
Për tangjenten dhe kotangjenten:
Formulat për zgjidhjen e ekuacioneve që përmbajnë funksione të anasjellta trigonometrike:

Metodat për zgjidhjen e ekuacioneve trigonometrike

Zgjidhja e çdo ekuacioni trigonometrik përbëhet nga dy faza:

  • me ndihmën e shndërrimit të tij në më të thjeshtën;
  • zgjidhni ekuacionin më të thjeshtë të marrë duke përdorur formulat rrënjësore dhe tabelat e shkruara më sipër.

Le të shohim metodat kryesore të zgjidhjes duke përdorur shembuj.

Metoda algjebrike.

Kjo metodë përfshin zëvendësimin e një ndryshoreje dhe zëvendësimin e saj në një barazi.

Shembull. Zgjidheni ekuacionin: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

bëni një zëvendësim: `cos(x+\frac \pi 6)=y`, pastaj `2y^2-3y+1=0`,

gjejmë rrënjët: `y_1=1, y_2=1/2`, nga të cilat pasojnë dy raste:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

Përgjigje: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Faktorizimi.

Shembull. Zgjidheni ekuacionin: `sin x+cos x=1`.

Zgjidhje. Le t'i zhvendosim majtas të gjitha termat e barazisë: `sin x+cos x-1=0`. Duke përdorur , ne transformojmë dhe faktorizojmë anën e majtë:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n` , `x_2=\pi/2+ 2\pi n`.

Përgjigje: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Reduktimi në një ekuacion homogjen

Së pari, ju duhet ta zvogëloni këtë ekuacion trigonometrik në një nga dy format:

"a mëkat x+b cos x=0" ( ekuacioni homogjen shkalla e parë) ose `a sin^2 x + b sin x cos x +c cos^2 x=0` (ekuacion homogjen i shkallës së dytë).

Më pas ndani të dyja pjesët me `cos x \ne 0` - për rastin e parë, dhe me `cos^2 x \ne 0` - për të dytën. Ne marrim ekuacione për `tg x`: `a tg x+b=0` dhe `a tg^2 x + b tg x +c =0`, të cilat duhet të zgjidhen duke përdorur metoda të njohura.

Shembull. Zgjidheni ekuacionin: `2 sin^2 x+sin x cos x - cos^2 x=1`.

Zgjidhje. Le të shkruajmë anën e djathtë si `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Ky është një ekuacion homogjen trigonometrik i shkallës së dytë, ne e ndajmë anën e majtë dhe të djathtë me 'cos^2 x \ne 0', marrim:

`\frac (sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) — \frac(2 cos^2 x)(cos^2 x)=0`

`tg^2 x+tg x — 2=0`. Le të prezantojmë zëvendësimin `tg x=t`, duke rezultuar në `t^2 + t - 2=0`. Rrënjët e këtij ekuacioni janë `t_1=-2` dhe `t_2=1`. Pastaj:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \në Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \në Z`.

Përgjigju. `x_1=arctg (-2)+\pi n`, `n \në Z`, `x_2=\pi/4+\pi n`, `n \në Z`.

Kalimi në gjysmë kënd

Shembull. Zgjidheni ekuacionin: `11 sin x - 2 cos x = 10`.

Zgjidhje. Le të zbatojmë formulat e këndit të dyfishtë, duke rezultuar në: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x /2 +10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Duke zbatuar sa më sipër metodë algjebrike, marrim:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \në Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \në Z`.

Përgjigju. `x_1=2 arctg 2+2\pi n, n \në Z`, `x_2=arctg 3/4+2\pi n`, `n \në Z`.

Futja e këndit ndihmës

Në ekuacionin trigonometrik `a sin x + b cos x =c`, ku a,b,c janë koeficientë dhe x është një variabël, ndani të dyja anët me `sqrt (a^2+b^2)`:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) cos x =` `\frac c(sqrt (a^2 ) +b^2))`.

Koeficientët në anën e majtë kanë vetitë e sinusit dhe kosinusit, domethënë shuma e katrorëve të tyre është e barabartë me 1 dhe modulet e tyre nuk janë më të mëdha se 1. Le t'i shënojmë si më poshtë: `\frac a(sqrt (a^2 +b^2))=cos \varphi`, ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2)) =C`, atëherë:

`cos \varphi sin x + sin \varphi cos x =C`.

Le të hedhim një vështrim më të afërt në shembullin e mëposhtëm:

Shembull. Zgjidheni ekuacionin: `3 sin x+4 cos x=2`.

Zgjidhje. Ndani të dyja anët e barazisë me `sqrt (3^2+4^2)`, marrim:

`\frac (3 sin x) (sqrt (3^2+4^2))+` `\frac(4 cos x)(sqrt (3^2+4^2))=` `\frac 2(sqrt (3^2+4^2))`

`3/5 mëkat x+4/5 cos x=2/5`.

Le të shënojmë `3/5 = cos \varphi` , `4/5=sin \varphi`. Meqenëse `sin \varphi>0`, `cos \varphi>0`, atëherë marrim `\varphi=arcsin 4/5` si një kënd ndihmës. Pastaj shkruajmë barazinë tonë në formën:

`cos \varphi sin x+sin \varphi cos x=2/5`

Duke zbatuar formulën për shumën e këndeve për sinusin, ne shkruajmë barazinë tonë në formën e mëposhtme:

`sin (x+\varphi)=2/5`,

`x+\varphi=(-1)^n hark 2/5+ \pi n`, `n \në Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Përgjigju. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Ekuacionet racionale trigonometrike thyesore

Këto janë barazime me thyesa, numëruesit dhe emëruesit e të cilave përmbajnë funksione trigonometrike.

Shembull. Zgjidhe ekuacionin. `\frac (sin x)(1+cos x)=1-cos x`.

Zgjidhje. Shumëzoni dhe pjesëtoni anën e djathtë të barazisë me `(1+cos x)`. Si rezultat marrim:

`\frac (sin x)(1+cos x)=` `\frac ((1-cos x)(1+cos x))(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-` `\frac (sin^2 x)(1+cos x)=0`

`\frac (sin x-sin^2 x)(1+cos x)=0`

Duke marrë parasysh që emëruesi nuk mund të jetë i barabartë me zero, marrim `1+cos x \ne 0`, `cos x \ne -1`, `x \ne \pi+2\pi n, n \në Z`.

Le të barazojmë numëruesin e thyesës me zero: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Pastaj `sin x=0` ose `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \në Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \në Z`.

Duke pasur parasysh se `x \ne \pi+2\pi n, n \in Z`, zgjidhjet janë `x=2\pi n, n \në Z` dhe `x=\pi /2+2\pi n` , `n \në Z`.

Përgjigju. `x=2\pi n`, `n \në Z`, `x=\pi /2+2\pi n`, `n \në Z`.

Trigonometria, dhe ekuacionet trigonometrike në veçanti, përdoren pothuajse në të gjitha fushat e gjeometrisë, fizikës dhe inxhinierisë. Mësimi fillon në klasën e 10-të, ka gjithmonë detyra për Provimin e Unifikuar të Shtetit, kështu që përpiquni të mbani mend të gjitha formulat e ekuacioneve trigonometrike - ato patjetër do t'ju jenë të dobishme!

Sidoqoftë, as nuk keni nevojë t'i mësoni përmendësh, gjëja kryesore është të kuptoni thelbin dhe të jeni në gjendje ta nxirrni atë. Nuk është aq e vështirë sa duket. Shihni vetë duke parë videon.

Ruajtja e privatësisë suaj është e rëndësishme për ne. Për këtë arsye, ne kemi zhvilluar një politikë të privatësisë që përshkruan se si ne përdorim dhe ruajmë informacionin tuaj. Ju lutemi rishikoni praktikat tona të privatësisë dhe na tregoni nëse keni ndonjë pyetje.

Mbledhja dhe përdorimi i informacionit personal

Informacioni personal i referohet të dhënave që mund të përdoren për të identifikuar ose kontaktuar një person specifik.

Mund t'ju kërkohet të jepni informacionin tuaj personal në çdo kohë kur na kontaktoni.

Më poshtë janë disa shembuj të llojeve të informacionit personal që mund të mbledhim dhe se si mund ta përdorim këtë informacion.

Çfarë informacioni personal mbledhim:

  • Kur dorëzoni një aplikim në sajt, ne mund të mbledhim informacione të ndryshme, duke përfshirë emrin tuaj, numrin e telefonit, adresën e emailit, etj.

Si i përdorim të dhënat tuaja personale:

  • Informacioni personal që mbledhim na lejon t'ju kontaktojmë me oferta unike, promovime dhe ngjarje të tjera dhe ngjarje të ardhshme.
  • Herë pas here, ne mund të përdorim të dhënat tuaja personale për të dërguar njoftime dhe komunikime të rëndësishme.
  • Ne gjithashtu mund të përdorim të dhënat personale për qëllime të brendshme, si kryerja e auditimeve, analizave të të dhënave dhe kërkimeve të ndryshme, me qëllim që të përmirësojmë shërbimet që ofrojmë dhe t'ju ofrojmë rekomandime në lidhje me shërbimet tona.
  • Nëse merrni pjesë në një tërheqje çmimesh, konkurs ose promovim të ngjashëm, ne mund të përdorim informacionin që ju jepni për të administruar programe të tilla.

Zbulimi i informacionit palëve të treta

Ne nuk ua zbulojmë informacionin e marrë nga ju palëve të treta.

Përjashtimet:

  • Nëse është e nevojshme - në përputhje me ligjin, procedurën gjyqësore, në procedurat ligjore dhe/ose në bazë të kërkesave publike ose kërkesave nga autoritetet qeveritare në territorin e Federatës Ruse - për të zbuluar informacionin tuaj personal. Ne gjithashtu mund të zbulojmë informacione rreth jush nëse përcaktojmë se një zbulim i tillë është i nevojshëm ose i përshtatshëm për qëllime sigurie, zbatimi të ligjit ose qëllime të tjera me rëndësi publike.
  • Në rast të një riorganizimi, bashkimi ose shitjeje, ne mund t'i transferojmë informacionet personale që mbledhim te pala e tretë pasardhëse e aplikueshme.

Mbrojtja e informacionit personal

Ne marrim masa paraprake - duke përfshirë administrative, teknike dhe fizike - për të mbrojtur informacionin tuaj personal nga humbja, vjedhja dhe keqpërdorimi, si dhe aksesi, zbulimi, ndryshimi dhe shkatërrimi i paautorizuar.

Respektimi i privatësisë suaj në nivel kompanie

Për t'u siguruar që informacioni juaj personal është i sigurt, ne u komunikojmë punonjësve tanë standardet e privatësisë dhe sigurisë dhe zbatojmë në mënyrë rigoroze praktikat e privatësisë.

Ekuacionet trigonometrike më të thjeshta janë ekuacionet

Cos (x) = a, sin (x) = a, tg (x) = a, ctg (x) =a

Ekuacioni cos(x) = a

Shpjegimi dhe arsyetimi

  1. Rrënjët e ekuacionit cosx = a. Kur | a | > 1 ekuacioni nuk ka rrënjë, pasi | cosx |< 1 для любого x (прямая y = а при а >1 ose në një< -1 не пересекает график функцииy = cosx).

Le të | a |< 1. Тогда прямая у = а пересекает график функции

y = cos x. Në interval, funksioni y = cos x zvogëlohet nga 1 në -1. Por një funksion në rënie merr secilën nga vlerat e tij vetëm në një pikë të domenit të tij të përkufizimit, prandaj ekuacioni cos x = a ka vetëm një rrënjë në këtë interval, e cila, sipas përcaktimit të arkkosinës, është e barabartë me: x 1 = arccos a (dhe për këtë rrënjë cos x = A).

Kosinusi është një funksion çift, pra në intervalin [-n; 0] ekuacioni cos x = dhe gjithashtu ka vetëm një rrënjë - numrin përballë x 1, domethënë

x 2 = -arccos a.

Kështu, në intervalin [-n; p] (gjatësia 2p) ekuacioni cos x = a me | a |< 1 имеет только корни x = ±arccos а.

Funksioni y = cos x është periodik me një periudhë 2n, prandaj të gjitha rrënjët e tjera ndryshojnë nga ato të gjetura me 2n (n € Z). Ne marrim formulën e mëposhtme për rrënjët e ekuacionit cos x = a kur

x = ±arccos a + 2pp, n £ Z.

  1. Raste të veçanta të zgjidhjes së ekuacionit cosx = a.

Është e dobishme të mbani mend shënime të veçanta për rrënjët e ekuacionit cos x = a kur

a = 0, a = -1, a = 1, e cila mund të merret lehtësisht duke përdorur rrethin e njësisë si referencë.

Meqenëse kosinusi është i barabartë me abshisën e pikës përkatëse të rrethit njësi, marrim se cos x = 0 nëse dhe vetëm nëse pika përkatëse e rrethit njësi është pika A ose pika B.

Në mënyrë të ngjashme, cos x = 1 nëse dhe vetëm nëse pika përkatëse e rrethit të njësisë është pika C, prandaj,

x = 2πп, k € Z.

Gjithashtu cos x = -1 nëse dhe vetëm nëse pika përkatëse e rrethit njësi është pika D, pra x = n + 2n,

Ekuacioni sin(x) = a

Shpjegimi dhe arsyetimi

  1. Rrënjët e ekuacionit sinx = a. Kur | a | > 1 ekuacioni nuk ka rrënjë, pasi | sinx |< 1 для любого x (прямая y = а на рисунке при а >1 ose në një< -1 не пересекает график функции y = sinx).

Metodat kryesore për zgjidhjen e ekuacioneve trigonometrike janë: reduktimi i ekuacioneve në më të thjeshtat (duke përdorur formulat trigonometrike), futja e ndryshoreve të reja dhe faktorizimi. Le të shohim përdorimin e tyre me shembuj. Kushtojini vëmendje formatit të shkrimit të zgjidhjeve të ekuacioneve trigonometrike.

Kusht i domosdoshëm për zgjidhjen me sukses të ekuacioneve trigonometrike është njohja e formulave trigonometrike (tema 13 e punës 6).

Shembuj.

1. Ekuacionet e reduktuara në më të thjeshtat.

1) Zgjidheni ekuacionin

Zgjidhja:

Përgjigje:

2) Gjeni rrënjët e ekuacionit

(sinx + cosx) 2 = 1 – sinxcosx, që i përket segmentit.

Zgjidhja:

Përgjigje:

2. Ekuacione që reduktohen në kuadratik.

1) Zgjidheni ekuacionin 2 sin 2 x – cosx –1 = 0.

Zgjidhja: Duke përdorur formulën sin 2 x = 1 – cos 2 x, marrim

Përgjigje:

2) Zgjidheni ekuacionin cos 2x = 1 + 4 cosx.

Zgjidhja: Duke përdorur formulën cos 2x = 2 cos 2 x – 1, marrim

Përgjigje:

3) Zgjidheni ekuacionin tgx – 2ctgx + 1 = 0

Zgjidhja:

Përgjigje:

3. Ekuacionet homogjene

1) Zgjidheni ekuacionin 2sinx – 3cosx = 0

Zgjidhje: Le të jetë cosx = 0, pastaj 2sinx = 0 dhe sinx = 0 – një kontradiktë me faktin se sin 2 x + cos 2 x = 1. Kjo do të thotë cosx ≠ 0 dhe ne mund ta ndajmë ekuacionin me cosx. marrim

Përgjigje:

2) Zgjidhe ekuacionin 1 + 7 cos 2 x = 3 sin 2x

Zgjidhja:

Ne përdorim formulat 1 = sin 2 x + cos 2 x dhe sin 2x = 2 sinxcosx, marrim

sin 2 x + cos 2 x + 7cos 2 x = 6sinxcosx
sin 2 x – 6sinxcosx+ 8cos 2 x = 0

Le të jetë cosx = 0, pastaj sin 2 x = 0 dhe sinx = 0 - një kontradiktë me faktin se sin 2 x + cos 2 x = 1.
Kjo do të thotë cosx ≠ 0 dhe ne mund ta ndajmë ekuacionin me cos 2 x . marrim

tg 2 x – 6 tgx + 8 = 0
Le të shënojmë tgx = y
y 2 – 6 y + 8 = 0
y 1 = 4; y2 = 2
a) tgx = 4, x= arctan4 + 2 k, k
b) tgx = 2, x= arctan2 + 2 k, k .

Përgjigje: arctg4 + 2 k, arctan2 + 2 k,k

4. Ekuacionet e formës a sinx + b cosx = s, s≠ 0.

1) Zgjidheni ekuacionin.

Zgjidhja:

Përgjigje:

5. Ekuacionet e zgjidhura me faktorizim.

1) Zgjidheni ekuacionin sin2x – sinx = 0.

Rrënja e ekuacionit f (X) = φ ( X) mund të shërbejë vetëm si numri 0. Le ta kontrollojmë këtë:

cos 0 = 0 + 1 - barazia është e vërtetë.

Numri 0 është rrënja e vetme e këtij ekuacioni.

Përgjigje: 0.

Kursi video "Merr një A" përfshin të gjitha temat e nevojshme për sukses dhënien e Provimit të Unifikuar të Shtetit në matematikë për 60-65 pikë. Plotësisht të gjitha problemet 1-13 Profili Provimi i Unifikuar i Shtetit matematikë. I përshtatshëm edhe për kalimin e Provimit Bazë të Shtetit të Unifikuar në matematikë. Nëse dëshironi të kaloni Provimin e Unifikuar të Shtetit me 90-100 pikë, duhet ta zgjidhni pjesën 1 në 30 minuta dhe pa gabime!

Kurs përgatitor për Provimin e Unifikuar të Shtetit për klasat 10-11, si dhe për mësuesit. Gjithçka që ju nevojitet për të zgjidhur Pjesën 1 të Provimit të Unifikuar të Shtetit në matematikë (12 detyrat e para) dhe Problemin 13 (trigonometri). Dhe kjo është më shumë se 70 pikë në Provimin e Unifikuar të Shtetit, dhe as një student me 100 pikë dhe as një student i shkencave humane nuk mund të bëjë pa to.

E gjithë teoria e nevojshme. Zgjidhje të shpejta, gracka dhe sekrete të Provimit të Unifikuar të Shtetit. Të gjitha detyrat aktuale të pjesës 1 nga Banka e Detyrave FIPI janë analizuar. Kursi përputhet plotësisht me kërkesat e Provimit të Unifikuar të Shtetit 2018.

Kursi përmban 5 tema të mëdha, 2.5 orë secila. Çdo temë jepet nga e para, thjeshtë dhe qartë.

Qindra detyra të Provimit të Unifikuar të Shtetit. Problemet e fjalëve dhe teoria e probabilitetit. Algoritme të thjeshta dhe të lehta për t'u mbajtur mend për zgjidhjen e problemeve. Gjeometria. Teori, material referues, analiza e të gjitha llojeve të detyrave të Provimit të Unifikuar të Shtetit. Stereometria. Zgjidhje të ndërlikuara, fletë të dobishme mashtrimi, zhvillimi i imagjinatës hapësinore. Trigonometria nga e para te problemi 13. Kuptimi në vend të grumbullimit. Shpjegimi vizual koncepte komplekse. Algjebër. Rrënjët, fuqitë dhe logaritmet, funksioni dhe derivati. Një bazë për zgjidhjen e problemeve komplekse të Pjesës 2 të Provimit të Unifikuar të Shtetit.