Određivanje broja njegovim logaritmom. Svojstva logaritama i primjeri njihovih rješenja. Sveobuhvatan vodič (2020). Psihologija i biologija

Date su osnovne osobine logaritma, logaritamski graf, domen definicije, skup vrijednosti, osnovne formule, povećanje i smanjenje. Razmatra se pronalaženje derivacije logaritma. I također integralno, proširenje u power series i predstavljanje pomoću kompleksnih brojeva.

Sadržaj

Domen, skup vrijednosti, povećanje, smanjenje

Logaritam je monotona funkcija, tako da nema ekstrema. Glavna svojstva logaritma prikazana su u tabeli.

Domain 0 < x < + ∞ 0 < x < + ∞
Raspon vrijednosti - ∞ < y < + ∞ - ∞ < y < + ∞
Monotona monotono raste monotono opada
Nule, y = 0 x = 1 x = 1
Točke preseka sa ordinatnom osom, x = 0 br br
+ ∞ - ∞
- ∞ + ∞

Privatne vrijednosti


Poziva se logaritam na osnovu 10 decimalni logaritam i označava se kako slijedi:

Logaritam prema bazi e pozvao prirodni logaritam:

Osnovne formule za logaritme

Svojstva logaritma koja proizlaze iz definicije inverzne funkcije:

Glavno svojstvo logaritama i njegove posljedice

Formula zamjene baze

Logaritam je matematička operacija uzimanja logaritma. Kada se uzimaju logaritmi, proizvodi faktora se pretvaraju u zbir članova.
Potenciranje je matematička operacija inverzna logaritmu. Tokom potenciranja, data baza se podiže do stepena ekspresije nad kojim se vrši potenciranje. U ovom slučaju, sume termina se pretvaraju u proizvode faktora.

Dokaz osnovnih formula za logaritme

Formule vezane za logaritme slijede iz formula za eksponencijalne funkcije i iz definicije inverzne funkcije.

Razmotrimo svojstvo eksponencijalne funkcije
.
Onda
.
Primijenimo svojstvo eksponencijalne funkcije
:
.

Dokažimo formulu zamjene baze.
;
.
Uz pretpostavku c = b, imamo:

Inverzna funkcija

Inverz logaritma bazi a je eksponencijalna funkcija s eksponentom a.

Ako onda

Ako onda

Derivat logaritma

Derivat logaritma modula x:
.
Derivat n-tog reda:
.
Izvođenje formula > > >

Da bi se pronašao izvod logaritma, on se mora svesti na bazu e.
;
.

Integral

Integral logaritma se izračunava integracijom po dijelovima: .
dakle,

Izrazi koji koriste kompleksne brojeve

Razmotrimo funkciju kompleksnog broja z:
.
Hajde da se izrazimo kompleksni broj z preko modula r i argument φ :
.
Zatim, koristeći svojstva logaritma, imamo:
.
Or

Međutim, argument φ nije jedinstveno definisan. Ako stavite
, gdje je n cijeli broj,
onda će to biti isti broj za različite n.

Dakle, logaritam, kao funkcija kompleksne varijable, nije jednoznačna funkcija.

Proširenje serije snaga

Kada dođe do proširenja:

Reference:
I.N. Bronstein, K.A. Semendjajev, Priručnik iz matematike za inženjere i studente, „Lan“, 2009.

Vidi također:

Nastavljamo da proučavamo logaritme. U ovom članku ćemo govoriti o izračunavanje logaritama, ovaj proces se zove logaritam. Prvo ćemo razumjeti izračunavanje logaritama po definiciji. Dalje, pogledajmo kako se vrijednosti logaritama pronalaze pomoću njihovih svojstava. Nakon toga ćemo se fokusirati na izračunavanje logaritama kroz početno navedene vrijednosti drugih logaritama. Na kraju, hajde da naučimo kako koristiti logaritamske tablice. Cijela teorija je opskrbljena primjerima sa detaljnim rješenjima.

Navigacija po stranici.

Izračunavanje logaritama po definiciji

U najjednostavnijim slučajevima moguće je izvesti prilično brzo i lako nalaženje logaritma po definiciji. Pogledajmo bliže kako se ovaj proces odvija.

Njegova suština je da broj b predstavi u obliku a c, iz kojeg je, po definiciji logaritma, broj c vrijednost logaritma. To jest, po definiciji, sljedeći lanac jednakosti odgovara pronalaženju logaritma: log a b=log a a c =c.

Dakle, izračunavanje logaritma po definiciji se svodi na pronalaženje broja c takvog da je a c = b, a sam broj c je željena vrijednost logaritma.

Uzimajući u obzir informacije iz prethodnih paragrafa, kada je broj pod znakom logaritma zadan određenom snagom baze logaritma, možete odmah naznačiti čemu je logaritam jednak - jednak je eksponentu. Pokažimo rješenja na primjerima.

Primjer.

Naći log 2 2 −3 i izračunati prirodni logaritam broja e 5,3.

Rješenje.

Definicija logaritma nam omogućava da odmah kažemo da je log 2 2 −3 =−3. Zaista, broj pod predznakom logaritma jednak je bazi 2 na stepen −3.

Slično, nalazimo drugi logaritam: lne 5,3 =5,3.

odgovor:

log 2 2 −3 =−3 i lne 5,3 =5,3.

Ako broj b ispod znaka logaritma nije naveden kao stepen osnove logaritma, onda morate pažljivo pogledati da li je moguće doći do prikaza broja b u obliku a c. Često je ovaj prikaz prilično očigledan, posebno kada je broj pod znakom logaritma jednak bazi na stepen od 1, ili 2, ili 3, ...

Primjer.

Izračunajte logaritme log 5 25 , i .

Rješenje.

Lako je vidjeti da je 25=5 2, ovo vam omogućava da izračunate prvi logaritam: log 5 25=log 5 5 2 =2.

Pređimo na izračunavanje drugog logaritma. Broj se može predstaviti kao stepen 7: (pogledajte ako je potrebno). dakle, .

Prepišimo treći logaritam u sljedećem obliku. Sada to možete vidjeti , iz čega zaključujemo da . Dakle, po definiciji logaritma .

Ukratko, rješenje bi se moglo napisati na sljedeći način: .

odgovor:

log 5 25=2 , I .

Kada je pod znakom logaritma dovoljno veliki prirodni broj, onda ne bi škodilo da ga uračunate u osnovne faktore. Često pomaže da se takav broj predstavi kao neki stepen baze logaritma i da se stoga izračuna ovaj logaritam po definiciji.

Primjer.

Pronađite vrijednost logaritma.

Rješenje.

Neka svojstva logaritama vam omogućavaju da odmah odredite vrijednost logaritama. Ova svojstva uključuju svojstvo logaritma jedinice i svojstvo logaritma broja jednakog bazi: log 1 1=log a a 0 =0 i log a a=log a a 1 =1. Odnosno, kada se pod znakom logaritma nalazi broj 1 ili broj a jednak osnovici logaritma, tada su u ovim slučajevima logaritmi jednaki 0 ​​i 1, respektivno.

Primjer.

Čemu su jednaki logaritmi i log10?

Rješenje.

Budući da , onda iz definicije logaritma slijedi .

U drugom primjeru, broj 10 pod predznakom logaritma se poklapa sa njegovom bazom, pa je decimalni logaritam od deset jednak jedan, odnosno lg10=lg10 1 =1.

odgovor:

I lg10=1 .

Imajte na umu da izračunavanje logaritama po definiciji (o čemu smo govorili u prethodnom pasusu) podrazumijeva korištenje jednakosti log a a p =p, što je jedno od svojstava logaritama.

U praksi, kada se broj pod znakom logaritma i baza logaritma lako mogu predstaviti kao stepen određenog broja, vrlo je zgodno koristiti formulu , što odgovara jednom od svojstava logaritma. Pogledajmo primjer pronalaženja logaritma koji ilustruje upotrebu ove formule.

Primjer.

Izračunajte logaritam.

Rješenje.

odgovor:

.

Svojstva logaritama koja nisu pomenuta se takođe koriste u proračunima, ali ćemo o tome govoriti u narednim paragrafima.

Pronalaženje logaritama kroz druge poznate logaritme

Informacije u ovom odlomku nastavljaju na temu korištenja svojstava logaritama prilikom njihovog izračunavanja. Ali ovdje je glavna razlika u tome što se svojstva logaritma koriste za izražavanje originalnog logaritma u terminima drugog logaritma čija je vrijednost poznata. Dajemo primjer za pojašnjenje. Recimo da znamo da je log 2 3≈1,584963, onda možemo pronaći, na primjer, log 2 6 tako što ćemo napraviti malu transformaciju koristeći svojstva logaritma: log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

U gornjem primjeru bilo nam je dovoljno koristiti svojstvo logaritma proizvoda. Međutim, mnogo češće je potrebno koristiti širi arsenal svojstava logaritama da bi se kroz zadane izračunao originalni logaritam.

Primjer.

Izračunajte logaritam od 27 do baze 60 ako znate da je log 60 2=a i log 60 5=b.

Rješenje.

Dakle, moramo pronaći log 60 27 . Lako je vidjeti da je 27 = 3 3 , a originalni logaritam, zbog svojstva logaritma stepena, može se prepisati kao 3·log 60 3 .

Sada da vidimo kako izraziti log 60 3 u terminima poznatih logaritama. Svojstvo logaritma broja jednakog bazi omogućava nam da zapišemo log jednakosti 60 60=1. S druge strane, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . dakle, 2 log 60 2+log 60 3+log 60 5=1. dakle, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Konačno, izračunavamo originalni logaritam: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

odgovor:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Odvojeno, vrijedi spomenuti značenje formule za prijelaz na novu bazu logaritma oblika . Omogućuje vam prelazak s logaritma s bilo kojom bazom na logaritme s određenom bazom, čije su vrijednosti poznate ili ih je moguće pronaći. Obično se iz originalnog logaritma, koristeći prelaznu formulu, prelaze na logaritme u jednoj od baza 2, e ili 10, jer za ove baze postoje tablice logaritama koje omogućavaju da se njihove vrijednosti izračunaju s određenim stupnjem tačnost. U sljedećem paragrafu ćemo pokazati kako se to radi.

Logaritamske tablice i njihova upotreba

Za približno izračunavanje vrijednosti logaritma mogu se koristiti logaritamske tablice. Najčešće korištena logaritamska tablica baze 2, tablica prirodnog logaritma i tablica decimalnog logaritma. Kada radite u decimalnom brojevnom sistemu, zgodno je koristiti tablicu logaritama na bazi deset. Uz njegovu pomoć naučit ćemo pronaći vrijednosti logaritama.










Prikazana tablica vam omogućava da pronađete vrijednosti decimalnih logaritama brojeva od 1.000 do 9.999 (sa tri decimalna mjesta) s točnošću od jedne desetohiljaditinke. Analizirat ćemo princip pronalaženja vrijednosti logaritma pomoću tablice decimalnih logaritama na konkretnom primjeru - ovako je jasnije. Nađimo log1.256.

U lijevom stupcu tablice decimalnih logaritama nalazimo prve dvije cifre broja 1.256, odnosno nalazimo 1.2 (ovaj broj je zaokružen plavom bojom radi jasnoće). Treća znamenka broja 1.256 (cifra 5) nalazi se u prvom ili posljednjem redu lijevo od dvostrukog reda (ovaj broj je zaokružen crvenom bojom). Četvrta znamenka originalnog broja 1.256 (cifra 6) nalazi se u prvom ili posljednjem redu desno od dvostrukog reda (ovaj broj je zaokružen zelenom linijom). Sada nalazimo brojeve u ćelijama tabele logaritama na preseku označenog reda i označenih kolona (ovi brojevi su označeni narandžastom bojom). Zbir označenih brojeva daje željenu vrijednost decimalnog logaritma sa tačnošću do četvrte decimale, tj. log1.236≈0.0969+0.0021=0.0990.

Da li je moguće, koristeći gornju tabelu, pronaći vrijednosti decimalnih logaritama brojeva koji imaju više od tri znamenke iza decimalnog zareza, kao i onih koji izlaze iz raspona od 1 do 9,999? Da, možeš. Pokažimo kako se to radi na primjeru.

Izračunajmo lg102.76332. Prvo treba da zapišete broj u standardnom obliku: 102,76332=1,0276332·10 2. Nakon ovoga, mantisu treba zaokružiti na treću decimalu, imamo 1.0276332 10 2 ≈1.028 10 2, dok je originalni decimalni logaritam približno jednak logaritmu rezultirajućeg broja, odnosno uzimamo log102.76332≈lg1.028·10 2. Sada primjenjujemo svojstva logaritma: lg1.028·10 2 =lg1.028+lg10 2 =lg1.028+2. Konačno, vrijednost logaritma lg1.028 nalazimo iz tabele decimalnih logaritama lg1.028≈0.0086+0.0034=0.012. Kao rezultat, cijeli proces izračunavanja logaritma izgleda ovako: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1.028+lg10 2 =log1.028+2≈0.012+2=2.012.

U zaključku, vrijedno je napomenuti da pomoću tablice decimalnih logaritama možete izračunati približnu vrijednost bilo kojeg logaritma. Da biste to učinili, dovoljno je koristiti formulu prijelaza za prelazak na decimalne logaritme, pronaći njihove vrijednosti u tablici i izvršiti preostale proračune.

Na primjer, izračunajmo log 2 3 . Prema formuli za prijelaz na novu bazu logaritma, imamo . Iz tabele decimalnih logaritama nalazimo log3≈0,4771 i log2≈0,3010. Dakle, .

Bibliografija.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. i dr. Algebra i počeci analize: Udžbenik za 10. - 11. razred opšteobrazovnih ustanova.
  • Gusev V.A., Mordkovich A.G. Matematika (priručnik za one koji upisuju tehničke škole).

Šta je logaritam?

Pažnja!
Postoje dodatni
materijala u Posebnom dijelu 555.
Za one koji su veoma "ne baš..."
I za one koji "jako...")

Šta je logaritam? Kako riješiti logaritme? Ova pitanja zbunjuju mnoge diplomce. Tradicionalno, tema logaritama se smatra složenom, nerazumljivom i zastrašujućom. Posebno jednadžbe sa logaritmima.

Ovo apsolutno nije tačno. Apsolutno! Ne vjerujete mi? U redu. Sada, za samo 10 - 20 minuta vi:

1. Razumjet ćete šta je logaritam.

2. Naučite riješiti cijelu klasu eksponencijalnih jednačina. Čak i ako niste ništa čuli o njima.

3. Naučite izračunati jednostavne logaritme.

Štaviše, za ovo ćete morati samo znati tablicu množenja i kako podići broj na stepen...

Osećam kao da sumnjaš... Pa, dobro, označi vreme! Idi!

Prvo riješite ovu jednačinu u svojoj glavi:

Ako vam se sviđa ovaj sajt...

Inače, imam još par zanimljivih stranica za vas.)

Možete vježbati rješavanje primjera i saznati svoj nivo. Testiranje sa trenutnom verifikacijom. Učimo - sa interesovanjem!)

Možete se upoznati sa funkcijama i izvedenicama.

Kako se društvo razvijalo i proizvodnja postajala složenija, razvijala se i matematika. Kretanje od jednostavnog ka složenom. Od običnog računovodstva metodom sabiranja i oduzimanja, uz njihovo višestruko ponavljanje, došli smo do pojma množenja i dijeljenja. Smanjenje ponovljene operacije množenja postalo je koncept eksponencijalnosti. Prve tabele zavisnosti brojeva od baze i broja eksponencijalnosti sastavio je još u 8. veku indijski matematičar Varasena. Od njih možete računati vrijeme pojavljivanja logaritama.

Istorijska skica

Preporod Evrope u 16. veku takođe je podstakao razvoj mehanike. T zahtevala veliku količinu proračuna vezano za množenje i dijeljenje višecifrenih brojeva. Drevni stolovi su bili od velike pomoći. Omogućili su zamjenu složenih operacija jednostavnijim - zbrajanjem i oduzimanjem. Veliki iskorak bio je rad matematičara Michaela Stiefela, objavljen 1544. godine, u kojem je realizovao ideju mnogih matematičara. To je omogućilo korištenje tablica ne samo za stupnjeve u obrascu primarni brojevi, ali i za proizvoljno racionalne.

Godine 1614, Škot Džon Napier, razvijajući ove ideje, prvi je uveo novi termin „logaritam broja“. Sastavljene su nove kompleksne tablice za izračunavanje logaritama sinusa i kosinusa, kao i tangenta. To je znatno smanjilo rad astronoma.

Počele su se pojavljivati ​​nove tablice koje su naučnici uspješno koristili tri stoljeća. Prošlo je dosta vremena dok nova operacija u algebri nije dobila svoj gotov oblik. Data je definicija logaritma i proučavana su njegova svojstva.

Tek u 20. veku, sa pojavom kalkulatora i kompjutera, čovečanstvo je napustilo drevne tablice koje su uspešno radile tokom 13. veka.

Danas logaritam od b na bazi a nazivamo brojem x koji je snaga od a da napravi b. Ovo je zapisano kao formula: x = log a(b).

Na primjer, log 3(9) bi bio jednak 2. Ovo je očigledno ako slijedite definiciju. Ako podignemo 3 na stepen 2, dobićemo 9.

Dakle, formulirana definicija postavlja samo jedno ograničenje: brojevi a i b moraju biti realni.

Vrste logaritama

Klasična definicija se zove realni logaritam i zapravo je rješenje jednadžbe a x = b. Opcija a = 1 je granična i nije od interesa. Pažnja: 1 na bilo koji stepen je jednako 1.

Realna vrijednost logaritma definiran samo kada su baza i argument veći od 0, a baza ne smije biti jednaka 1.

Posebno mjesto u oblasti matematike igrajte logaritme, koji će se imenovati ovisno o veličini njihove baze:

Pravila i ograničenja

Osnovno svojstvo logaritama je pravilo: logaritam proizvoda jednak je logaritamskom zbroju. log abp = log a(b) + log a(p).

Kao varijanta ove izjave bit će: log c(b/p) = log c(b) - log c(p), kvocijentna funkcija je jednaka razlici funkcija.

Iz prethodna dva pravila lako je vidjeti da je: log a(b p) = p * log a(b).

Ostala svojstva uključuju:

Komentar. Nemojte praviti uobičajenu grešku - logaritam zbira nije jednak zbiru logaritama.

Tokom mnogo stoljeća, operacija pronalaženja logaritma bila je prilično dugotrajan zadatak. Matematičari su koristili dobro poznatu formulu logaritamske teorije polinomske ekspanzije:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n), gdje je n prirodni broj veći od 1, koji određuje tačnost izračunavanja.

Logaritmi s drugim bazama izračunati su korištenjem teoreme o prijelazu s jedne baze na drugu i svojstva logaritma proizvoda.

Budući da je ova metoda vrlo radno intenzivna i prilikom odlučivanja praktični problemi teške za implementaciju, koristili smo unaprijed sastavljene tabele logaritama, što je značajno ubrzalo sav rad.

U nekim slučajevima korišteni su posebno sastavljeni grafikoni logaritama, koji su davali manju preciznost, ali značajno ubrzavali traženje željene vrijednosti. Kriva funkcije y = log a(x), konstruisana preko nekoliko tačaka, omogućava vam da koristite regularni lenjir da pronađete vrednost funkcije u bilo kojoj drugoj tački. Inženjeri dugo vrijeme U te svrhe korišten je tzv.

U 17. veku pojavili su se prvi pomoćni analogni računarski uslovi, koji 19. vijek dobio gotov izgled. Najuspješniji uređaj zvao se klizač. Unatoč jednostavnosti uređaja, njegov izgled značajno je ubrzao proces svih inženjerskih proračuna, a to je teško precijeniti. Trenutno je malo ljudi upoznato s ovim uređajem.

Pojava kalkulatora i kompjutera učinila je besmislenom upotrebu bilo kojih drugih uređaja.

Jednačine i nejednačine

Za rješavanje različitih jednadžbi i nejednačina korištenjem logaritama koriste se sljedeće formule:

  • Prijelaz s jedne baze na drugu: log a(b) = log c(b) / log c(a);
  • Kao posljedica prethodne opcije: log a(b) = 1 / log b(a).

Za rješavanje nejednakosti korisno je znati:

  • Vrijednost logaritma će biti pozitivna samo ako su baza i argument veći ili manji od jedan; ako je barem jedan uvjet prekršen, vrijednost logaritma će biti negativna.
  • Ako je funkcija logaritma primijenjena na desnu i lijevu stranu nejednakosti, a baza logaritma je veća od jedan, onda je predznak nejednakosti sačuvan; inače se menja.

Problemi sa uzorcima

Razmotrimo nekoliko opcija za korištenje logaritama i njihovih svojstava. Primjeri sa rješavanjem jednadžbi:

Razmotrimo opciju stavljanja logaritma u stepen:

  • Zadatak 3. Izračunajte 25^log 5(3). Rešenje: u uslovima problema, unos je sličan sledećem (5^2)^log5(3) ili 5^(2 * log 5(3)). Zapišimo to drugačije: 5^log 5(3*2), ili kvadrat broja kao argument funkcije može se napisati kao kvadrat same funkcije (5^log 5(3))^2. Koristeći svojstva logaritama, ovaj izraz je jednak 3^2. Odgovor: kao rezultat izračuna dobijamo 9.

Praktična upotreba

Budući da je čisto matematički alat, čini se da je daleko od toga pravi zivot koji je logaritam iznenada stekao veliki značaj za opisivanje objekata iz stvarnog svijeta. Teško je naći nauku u kojoj se ne koristi. Ovo se u potpunosti odnosi ne samo na prirodne, već i na prirodne humanitarne oblasti znanje.

Logaritamske zavisnosti

Evo nekoliko primjera numeričkih ovisnosti:

Mehanika i fizika

Istorijski gledano, mehanika i fizika su se uvijek razvijale korištenjem matematičke metode istraživanja i istovremeno je poslužio kao poticaj za razvoj matematike, uključujući i logaritme. Teorija većine zakona fizike napisana je jezikom matematike. Navedimo samo dva primjera opisa fizički zakoni koristeći logaritam.

Problem izračunavanja tako složene veličine kao što je brzina rakete može se riješiti korištenjem formule Tsiolkovsky, koja je postavila temelje za teoriju istraživanja svemira:

V = I * ln (M1/M2), gdje je

  • V je konačna brzina aviona.
  • I – specifični impuls motora.
  • M 1 – početna masa rakete.
  • M 2 – konačna masa.

Još jedan važan primjer- ovo se koristi u formuli drugog velikog naučnika Maxa Plancka, koja služi za procjenu stanja ravnoteže u termodinamici.

S = k * ln (Ω), gdje je

  • S – termodinamičko svojstvo.
  • k – Boltzmannova konstanta.
  • Ω je statistička težina različitih stanja.

hemija

Manje očigledna je upotreba formula u hemiji koje sadrže omjer logaritama. Navedimo samo dva primjera:

  • Nernstova jednadžba, stanje redoks potencijala medija u odnosu na aktivnost supstanci i konstantu ravnoteže.
  • Proračun takvih konstanti kao što su indeks autolize i kiselost otopine također se ne može obaviti bez naše funkcije.

Psihologija i biologija

I uopće nije jasno kakve veze psihologija ima s tim. Pokazalo se da je jačina osjeta dobro opisana ovom funkcijom kao inverzni omjer vrijednosti intenziteta stimulusa prema nižoj vrijednosti intenziteta.

Nakon navedenih primjera, više ne čudi što se tema logaritma široko koristi u biologiji. O biološkim oblicima koji odgovaraju logaritamskim spiralama mogli bi se napisati čitavi tomovi.

Ostala područja

Čini se da je postojanje svijeta nemoguće bez veze s ovom funkcijom, a ona vlada svim zakonima. Pogotovo kada su u vezi sa zakonima prirode geometrijska progresija. Vrijedi se obratiti na web stranicu MatProfi, a takvih primjera ima mnogo u sljedećim područjima djelovanja:

Lista može biti beskonačna. Nakon što ste savladali osnovne principe ove funkcije, možete uroniti u svijet beskonačne mudrosti.

Logaritam pozitivan broj N do baze(b> 0, b 1 ) naziva eksponent x , do koje trebate izgraditi b da dobijete N .

Logaritamski zapis:

Ovaj unos je ekvivalentan sljedećem:b x = N .

PRIMJERI: dnevnik 3 81 = 4, jer je 3 4 = 81;

Dnevnik 1/3 27 = 3, budući da je (1/3) - 3 = 3 3 = 27.

Gornja definicija logaritma može se napisati kao identitet:

Osnovna svojstva logaritama.

1) log b= 1 , jer b 1 = b.

b

2) log 1 = 0 , jer b 0 = 1 .

b

3) Logaritam proizvoda jednak je zbroju logaritama faktora:

dnevnik( ab) = log a+ log b.

4) Logaritam količnika jednak je razlici između logaritama dividende i djelitelja:

dnevnik( a/b) = log a–log b.

5) Logaritam stepena jednak je umnošku eksponenta i logaritma njegove baze:

log (b k ) = k log b.

Posljedica ovog svojstva je sljedeća:logaritam korijena jednak logaritmu radikalnog broja podijeljenog potencijom korijena:

6) Ako je osnova logaritma stepen, onda je vrijednost inverzno od eksponenta, može se izvaditi iz log znaka rima:

Posljednja dva svojstva mogu se kombinirati u jednu:

7) Formula prelaznog modula (tj. e . prelazak sa jedne bazelogaritam na drugu bazu):

U posebnom slučaju kada N=a imamo:

Decimalni logaritam pozvao osnovni logaritam 10. Određeno je lg, tj. dnevnik 10 N = lg N. Logaritmi brojeva 10, 100, 1000, ... str brojevi su 1, 2, 3, …, redomone.

imaju toliko pozitivnih jedinica, koliko nula ima u logaritamskom broju nakon jedan. Logaritmi brojeva 0,1, 0,01, 0,001, ... str –2, avna odnosno –1, –3, …, tj. ima onoliko negativnih koliko ima nula ispred jedan u logaritamskom broju ( brojanje i nula cijelih brojeva ). Logaritmi drugi brojevi imaju razlomak tzv mantissa. Cijeli dio logaritma se zove karakteristika. Za praktičnu upotrebu

Najprikladniji su decimalni logaritmi. pozvao osnovni logaritam Prirodni logaritame. Određeno je ln, tj. logN = e N ln . Brojeje iracionalno, to približna vrijednost 2,718281828. To(1 + 1 / je granica kojoj broj teži) je granica kojoj broj teži nuz neograničeno povećanjen (cm. ).
prva divna granica Koliko god čudno izgledalo, prirodni logaritmi su se pokazali vrlo zgodnim za izvođenje razne vrste
operacije vezane za analizu funkcija.Prirodni logaritamIzračunavanje logaritama na osnovu