Oblasť pod priraďovacím grafom. Určitý integrál. Ako vypočítať plochu obrázku. Príklady výpočtu plochy obrazca ohraničeného priamkami y=f(x) alebo x=g(y)

V predchádzajúcej časti, venovanej analýze geometrického významu určitého integrálu, sme získali niekoľko vzorcov na výpočet plochy krivočiareho lichobežníka:

S (G) = ∫ a b f (x) d x pre spojitú a nezápornú funkciu y = f (x) na segmente [ a ; b] ,

S (G) = - ∫ a b f (x) d x pre spojitú a nekladnú funkciu y = f (x) na segmente [ a ; b] .

Tieto vzorce sú použiteľné na riešenie relatívne jednoduchých problémov. V skutočnosti musíme často pracovať so zložitejšími tvarmi. V tejto súvislosti budeme túto časť venovať analýze algoritmov na výpočet plochy obrázkov, ktoré sú obmedzené funkciami v explicitnej forme, t.j. ako y = f(x) alebo x = g(y) .

Veta

Nech sú funkcie y = f 1 (x) a y = f 2 (x) definované a spojité na segmente [ a ; b] a f 1 (x) ≤ f 2 (x) pre akúkoľvek hodnotu x z [ a ; b] . Potom bude vzorec na výpočet plochy obrázku G ohraničený čiarami x \u003d a, x \u003d b, y \u003d f 1 (x) a y \u003d f 2 (x) vyzerať ako S ( G) \u003d ∫ a b f 2 (x) - f 1 (x) d x .

Podobný vzorec bude platiť pre oblasť čísla ohraničenú čiarami y \u003d c, y \u003d d, x \u003d g 1 (y) a x \u003d g 2 (y): S (G) \u003d ∫ c d (g 2 (y) - g 1 (y) d y .

Dôkaz

Budeme analyzovať tri prípady, pre ktoré bude vzorec platiť.

V prvom prípade, berúc do úvahy aditívnu vlastnosť oblasti, súčet plôch pôvodného obrázku G a krivočiareho lichobežníka G1 sa rovná ploche obrázku G2. Znamená to, že

Preto S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x .

Posledný prechod môžeme vykonať pomocou tretej vlastnosti určitého integrálu.

V druhom prípade platí rovnosť: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 ( x) - f 1 (x)) d x

Grafické znázornenie bude vyzerať takto:

Ak sú obe funkcie kladné, dostaneme: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x. Grafické znázornenie bude vyzerať takto:

Prejdime k úvahe o všeobecnom prípade, keď y = f 1 (x) a y = f 2 (x) pretínajú os O x .

Priesečníky budeme označovať ako x i , i = 1 , 2 , . . . , n-1. Tieto body zlomia segment [ a ; b] na n častí x i-1; x i, i = 1, 2,. . . , n , kde α = x 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

v dôsledku toho

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Posledný prechod môžeme urobiť pomocou piatej vlastnosti určitého integrálu.

Znázornime všeobecný prípad na grafe.

Vzorec S (G) = ∫ a b f 2 (x) - f 1 (x) d x možno považovať za preukázaný.

A teraz prejdime k analýze príkladov výpočtu plochy čísel, ktoré sú obmedzené čiarami y \u003d f (x) a x \u003d g (y) .

Ak vezmeme do úvahy niektorý z príkladov, začneme s konštrukciou grafu. Obrázok nám umožní reprezentovať zložité tvary ako kombinácie jednoduchších tvarov. Ak je pre vás vykresľovanie grafov a tvarov na nich náročné, môžete si preštudovať časť o základných elementárnych funkciách, geometrickej transformácii grafov funkcií, ako aj vykresľovaní pri štúdiu funkcie.

Príklad 1

Je potrebné určiť plochu obrázku, ktorá je obmedzená parabolou y \u003d - x 2 + 6 x - 5 a priamkami y \u003d - 1 3 x - 1 2, x \u003d 1, x \u003d 4.

Riešenie

Nakreslíme čiary do grafu v karteziánskom súradnicovom systéme.

Na intervale [ 1 ; 4] graf paraboly y = - x 2 + 6 x - 5 sa nachádza nad priamkou y = - 1 3 x - 1 2 . V tejto súvislosti na získanie odpovede používame vzorec získaný skôr, ako aj metódu na výpočet určitého integrálu pomocou vzorca Newton-Leibniz:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 4 3 + 19 6 4 2 - 9 2 4 - - 1 3 1 3 + 19 6 1 2 - 9 2 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Odpoveď: S (G) = 13

Pozrime sa na zložitejší príklad.

Príklad 2

Je potrebné vypočítať plochu obrázku, ktorá je obmedzená čiarami y = x + 2, y = x, x = 7.

Riešenie

V tomto prípade máme len jednu priamku rovnobežnú s osou x. Toto je x = 7. To si vyžaduje, aby sme sami našli druhý integračný limit.

Zostavme graf a umiestnime naň čiary uvedené v podmienke problému.

Keď máme pred očami graf, môžeme ľahko určiť, že spodná hranica integrácie bude úsečka priesečníka grafu s priamkou y \u003d x a semiparabolou y \u003d x + 2. Na nájdenie abscisy používame rovnosti:

y = x + 2 O DZ: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 1 (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ O D G x 2 = 1 - 9 2 = - 1 ∉ O D G

Ukazuje sa, že úsečka priesečníka je x = 2.

Upozorňujeme na skutočnosť, že vo všeobecnom príklade na výkrese sa priamky y = x + 2, y = x pretínajú v bode (2 ; 2) , takže takéto podrobné výpočty sa môžu zdať nadbytočné. Takéto podrobné riešenie sme tu poskytli len preto, že v zložitejších prípadoch nemusí byť riešenie také zrejmé. To znamená, že súradnice priesečníka čiar je lepšie vždy vypočítať analyticky.

Na intervale [ 2 ; 7 ] graf funkcie y = x sa nachádza nad grafom funkcie y = x + 2 . Na výpočet plochy použite vzorec:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 (7 + 2) 3 2 - 2 2 2 - 2 3 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Odpoveď: S (G) = 59 6

Príklad 3

Je potrebné vypočítať plochu obrázku, ktorá je obmedzená grafmi funkcií y \u003d 1 x a y \u003d - x 2 + 4 x - 2.

Riešenie

Nakreslíme čiary na grafe.

Definujme hranice integrácie. Aby sme to dosiahli, určíme súradnice priesečníkov priamok tak, že dáme rovnítko medzi výrazy 1 x a - x 2 + 4 x - 2 . Za predpokladu, že x sa nerovná nule, rovnosť 1 x \u003d - x 2 + 4 x - 2 sa stane ekvivalentnou rovnici tretieho stupňa - x 3 + 4 x 2 - 2 x - 1 \u003d 0 s celočíselnými koeficientmi . Pamäť algoritmu na riešenie takýchto rovníc si môžete obnoviť podľa časti „Riešenie kubických rovníc“.

Koreň tejto rovnice je x = 1: - 1 3 + 4 1 2 - 2 1 - 1 = 0.

Vydelením výrazu - x 3 + 4 x 2 - 2 x - 1 dvojčlenkou x - 1 dostaneme: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Zostávajúce korene nájdeme z rovnice x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (- 3) 2 - 4 1 (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3; x 2 \u003d 3 – 13 2 ≈ – 0. 3

Našli sme interval x ∈ 1; 3 + 13 2 , kde G je ohraničené nad modrou čiarou a pod červenou čiarou. To nám pomáha určiť oblasť tvaru:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 3 + 13 2 2 - 2 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 1 2 - 2 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Odpoveď: S (G) \u003d 7 + 13 3 - ln 3 + 13 2

Príklad 4

Je potrebné vypočítať plochu obrázku, ktorá je obmedzená krivkami y \u003d x 3, y \u003d - log 2 x + 1 a osou x.

Riešenie

Dajme všetky čiary do grafu. Graf funkcie y = - log 2 x + 1 dostaneme z grafu y = log 2 x, ak ho umiestnime symetricky okolo osi x a posunieme ho o jednotku nahor. Rovnica osi x y \u003d 0.

Označme priesečníky čiar.

Ako je zrejmé z obrázku, grafy funkcií y \u003d x 3 a y \u003d 0 sa pretínajú v bode (0; 0) . Je to preto, že x \u003d 0 je jediným skutočným koreňom rovnice x 3 \u003d 0.

x = 2 je jediný koreň rovnice - log 2 x + 1 = 0 , teda grafy funkcií y = - log 2 x + 1 a y = 0 sa pretínajú v bode (2 ; 0) .

x = 1 je jediný koreň rovnice x 3 = - log 2 x + 1 . V tomto ohľade sa grafy funkcií y \u003d x 3 a y \u003d - log 2 x + 1 pretínajú v bode (1; 1) . Posledné tvrdenie nemusí byť zrejmé, ale rovnica x 3 \u003d - log 2 x + 1 nemôže mať viac ako jeden koreň, pretože funkcia y \u003d x 3 sa prísne zvyšuje a funkcia y \u003d - log 2 x + 1 sa výrazne znižuje.

Ďalší krok zahŕňa niekoľko možností.

Možnosť číslo 1

Obrázok G môžeme znázorniť ako súčet dvoch krivočiarych lichobežníkov umiestnených nad osou x, z ktorých prvý je umiestnený pod stredovou čiarou na úsečke x ∈ 0; 1 a druhý je pod červenou čiarou na segmente x ∈ 1; 2. To znamená, že plocha sa bude rovnať S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Možnosť číslo 2

Obrázok G môže byť reprezentovaný ako rozdiel dvoch obrázkov, z ktorých prvý je umiestnený nad osou x a pod modrou čiarou na segmente x ∈ 0; 2 a druhá je medzi červenou a modrou čiarou na segmente x ∈ 1; 2. To nám umožňuje nájsť oblasť takto:

S (G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

V tomto prípade na nájdenie oblasti budete musieť použiť vzorec v tvare S (G) \u003d ∫ c d (g 2 (y) - g 1 (y)) d y. V skutočnosti môžu byť čiary, ktoré viažu tvar, reprezentované ako funkcie argumentu y.

Vyriešme rovnice y = x 3 a - log 2 x + 1 vzhľadom na x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Získame požadovanú oblasť:

S (G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Odpoveď: S (G) = 1 ln 2 - 1 4

Príklad 5

Je potrebné vypočítať plochu obrázku, ktorá je obmedzená čiarami y \u003d x, y \u003d 2 3 x - 3, y \u003d - 1 2 x + 4.

Riešenie

Nakreslite do grafu čiaru červenou čiarou, danou funkciou y = x . Nakreslite čiaru y = - 1 2 x + 4 modrou farbou a čiaru y = 2 3 x - 3 označte čiernou farbou.

Všimnite si priesečníky.

Nájdite priesečníky grafov funkcií y = x a y = - 1 2 x + 4:

x = - 1 2 x + 4 O DZ: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20 ) 2 - 4 1 64 \u003d 144 x 1 \u003d 20 + 144 2 \u003d 16; x 2 = 20 - 144 2 = 4 i je riešenie rovnice x 2 = 4 = 2 , - 1 2 x 2 + 4 = - 1 2 4 + 4 = 2 ⇒ x 2 = 4 je riešenie rovnice ⇒ (4 ; 2) priesečník i y = x a y = - 1 2 x + 4

Nájdite priesečník grafov funkcií y = x a y = 2 3 x - 3:

x = 2 3 x - 3 O DZ: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 4 81 = 729 x 1 = 45 + 729 8 = 9, x 2 45 - 729 8 = 9 4 Kontrola: x 1 = 9 = 3, 2 3 x 1 - 3 \u003d 2 3 9 - 3 \u003d 3 ⇒ x 1 \u003d 9 je riešenie rovnice ⇒ (9; 3) bod a priesečník y = x a y = 2 3 x - 3 x 2 = 9 4 = 3 2, 2 3 x 1 - 3 = 2 3 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 nie je riešením rovnice

Nájdite priesečník priamok y = - 1 2 x + 4 a y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 6 + 4 = 2 3 6 - 3 = 1 ⇒ (6 1) priesečník y = - 1 2 x + 4 a y = 2 3 x - 3

Metóda číslo 1

Plochu požadovaného obrazca predstavujeme ako súčet plôch jednotlivých obrazcov.

Potom je plocha obrázku:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 6 3 2 + 6 2 4 - 4 6 - 2 3 4 3 2 + 4 2 4 - 4 4 + + 2 3 9 3 2 - 9 2 3 + 3 9 - 2 3 6 3 2 - 6 2 3 + 3 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Metóda číslo 2

Plochu pôvodnej figúry možno znázorniť ako súčet ďalších dvoch figúrok.

Potom vyriešime priamkovú rovnicu pre x a až potom použijeme vzorec na výpočet plochy obrázku.

y = x ⇒ x = y 2 červená čiara y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 čierna čiara y = - 1 2 x + 4 ⇒ x = - 2 y + 8 s i n i i l i n i i

Oblasť je teda:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d 2 + ∫ 3 3 2 r + 9 2 - r 2 r = = 7 4 r. 2 - 7 4 r. 1 2 + - r. 3 3 + 3 r. 2 4 + 9 2 r. 2 3 = 7 4 2 2 - 7 4 2 - 7 4 1 2 - 7 4 1 + + - 3 3 3 + 3 3 2 4 + 9 2 3 - - 2 3 3 + 3 2 2 4 + 9 2 2 = = 7 4 + 23 12 = 11 3

Ako vidíte, hodnoty sa zhodujú.

Odpoveď: S (G) = 11 3

Výsledky

Aby sme našli oblasť obrázku, ktorá je ohraničená danými čiarami, musíme nakresliť čiary v rovine, nájsť ich priesečníky a použiť vzorec na nájdenie oblasti. V tejto časti sme zhodnotili najbežnejšie možnosti úloh.

Ak si všimnete chybu v texte, zvýraznite ju a stlačte Ctrl+Enter

Začneme uvažovať o samotnom procese výpočtu dvojitého integrálu a oboznámime sa s jeho geometrickým významom.

Dvojitý integrál sa číselne rovná ploche plochého útvaru (región integrácie). Ide o najjednoduchší tvar dvojitého integrálu, keď sa funkcia dvoch premenných rovná jednej: .

Najprv sa pozrime na problém všeobecne. Teraz budete prekvapení, aké jednoduché to naozaj je! Vypočítajme plochu plochej postavy ohraničenú čiarami. Pre istotu predpokladáme, že na intervale . Plocha tohto obrázku sa číselne rovná:

Znázornime oblasť na výkrese:

Vyberme si prvý spôsob obídenia oblasti:

Touto cestou:

A hneď dôležitý technický trik: iterované integrály možno posudzovať samostatne. Najprv vnútorný integrál, potom vonkajší integrál. Táto metóda sa dôrazne odporúča pre začiatočníkov v téme čajníky.

1) Vypočítajte vnútorný integrál, pričom integrácia sa vykonáva nad premennou "y":

Neurčitý integrál je tu najjednoduchší a potom sa používa banálny Newton-Leibnizov vzorec, len s tým rozdielom, že limitmi integrácie nie sú čísla, ale funkcie. Najprv sme dosadili hornú hranicu do „y“ (antiderivačná funkcia), potom dolnú hranicu

2) Výsledok získaný v prvom odseku musí byť dosadený do externého integrálu:

Kompaktnejší zápis celého riešenia vyzerá takto:

Výsledný vzorec je presne tým pracovným vzorcom na výpočet plochy plochej postavy pomocou „obyčajného“ určitého integrálu! Pozri lekciu Výpočet plochy pomocou určitého integrálu, tam je na každom kroku!

teda problém výpočtu plochy pomocou dvojitého integrálu trochu inak z problému nájdenia oblasti pomocou určitého integrálu! V skutočnosti sú jedno a to isté!

Preto by nemali vzniknúť žiadne ťažkosti! Nebudem uvažovať o mnohých príkladoch, pretože ste sa s týmto problémom v skutočnosti opakovane stretli.

Príklad 9

Riešenie: Znázornime oblasť na výkrese:

Zvoľme nasledovné poradie prechodu regiónu:

Tu a nižšie sa nebudem zaoberať tým, ako prejsť oblasťou, pretože prvý odsek bol veľmi podrobný.

Touto cestou:

Ako som už poznamenal, pre začiatočníkov je lepšie počítať iterované integrály samostatne, budem dodržiavať rovnakú metódu:

1) Najprv sa pomocou Newtonovho-Leibnizovho vzorca zaoberáme vnútorným integrálom:

2) Výsledok získaný v prvom kroku sa dosadí do vonkajšieho integrálu:

Bod 2 je vlastne nájdenie plochy plochej postavy pomocou určitého integrálu.

odpoveď:

Tu je taká hlúpa a naivná úloha.

Zaujímavý príklad nezávislého riešenia:

Príklad 10

Pomocou dvojitého integrálu vypočítajte plochu rovinného útvaru ohraničeného priamkami , ,

Príklad konečného riešenia na konci hodiny.

V príkladoch 9-10 je oveľa výhodnejšie použiť prvý spôsob obchádzania územia, zvedaví čitatelia si mimochodom môžu zmeniť poradie obchvatu a vypočítať plochy druhým spôsobom. Ak neurobíte chybu, prirodzene sa získajú rovnaké hodnoty plochy.

V niektorých prípadoch je však efektívnejší druhý spôsob, ako obísť oblasť, a na záver kurzu mladého hlupáka sa pozrime na niekoľko ďalších príkladov na túto tému:

Príklad 11

Pomocou dvojitého integrálu vypočítajte plochu rovinného útvaru ohraničeného čiarami.

Riešenie: tešíme sa na dve paraboly s vánkom, ktoré ležia na boku. Netreba sa usmievať, s podobnými vecami vo viacerých integráloch sa stretávame často.

Aký je najjednoduchší spôsob, ako urobiť kresbu?

Predstavme si parabolu ako dve funkcie:
- horná vetva a - spodná vetva.

Podobne predstavujeme parabolu ako hornú a dolnú vetvu.

Plocha obrázku sa vypočíta pomocou dvojitého integrálu podľa vzorca:

Čo sa stane, ak zvolíme prvý spôsob obídenia oblasti? Po prvé, táto oblasť bude musieť byť rozdelená na dve časti. A po druhé, budeme pozorovať tento smutný obraz: . Integrály, samozrejme, nie sú na superkomplexnej úrovni, ale ... hovorí staré matematické príslovie: kto je priateľský s koreňmi, nepotrebuje kompenzovanie.

Preto z nedorozumenia, ktoré je uvedené v podmienke, vyjadrujeme inverzné funkcie:

Inverzné funkcie v tomto príklade majú tú výhodu, že okamžite nastavia celú parabolu bez akýchkoľvek listov, žaluďov, konárov a koreňov.

Podľa druhej metódy bude prechod oblasti takýto:

Touto cestou:

Ako sa hovorí, cítiť rozdiel.

1) Zaoberáme sa vnútorným integrálom:

Výsledok dosadíme do vonkajšieho integrálu:

Integrácia nad premennou "y" by nemala byť trápna, ak by tam bolo písmeno "zyu" - bolo by skvelé nad ním integrovať. Hoci kto čítal druhý odsek lekcie Ako vypočítať objem rotačného telesa, s integráciou nad „y“ už nezažíva ani najmenšie rozpaky.

Venujte pozornosť aj prvému kroku: integrand je párny a segment integrácie je symetrický okolo nuly. Preto je možné segment rozdeliť na polovicu a výsledok môže byť dvojnásobný. Táto technika je v lekcii podrobne komentovaná. Efektívne metódy na výpočet určitého integrálu.

Čo dodať…. Všetko!

odpoveď:

Ak chcete otestovať svoju integračnú techniku, môžete skúsiť vypočítať . Odpoveď by mala byť úplne rovnaká.

Príklad 12

Pomocou dvojitého integrálu vypočítajte plochu rovinného útvaru ohraničeného čiarami

Toto je príklad „urob si sám“. Je zaujímavé poznamenať, že ak sa pokúsite použiť prvý spôsob na obídenie oblasti, postava sa už nerozdelí na dve, ale na tri časti! A podľa toho dostaneme tri páry iterovaných integrálov. Niekedy sa to stane.

Majstrovská trieda sa skončila a je čas prejsť na úroveň veľmajstra - Ako vypočítať dvojitý integrál? Príklady riešení. V druhom článku sa budem snažiť nebyť taký maniak =)

Prajem vám úspech!

Riešenia a odpovede:

Príklad 2:Riešenie: Nakreslite oblasť na výkrese:

Zvoľme nasledovné poradie prechodu regiónu:

Touto cestou:
Prejdime k inverzným funkciám:


Touto cestou:
odpoveď:

Príklad 4:Riešenie: Prejdime k priamym funkciám:


Vykonajte kreslenie:

Zmeňme poradie prechodu oblasti:

odpoveď:

Poradie prechodu oblasti:

Touto cestou:

1)
2)

odpoveď:

Aplikácia integrálu na riešenie aplikovaných problémov

Výpočet plochy

Určitý integrál spojitej nezápornej funkcie f(x) sa numericky rovná oblasť krivočiareho lichobežníka ohraničeného krivkou y \u003d f (x), osou O x a priamkami x \u003d a a x \u003d b. V súlade s tým je vzorec oblasti napísaný takto:

Zvážte niekoľko príkladov výpočtu plôch rovinných útvarov.

Číslo úlohy 1. Vypočítajte plochu ohraničenú čiarami y \u003d x 2 +1, y \u003d 0, x \u003d 0, x \u003d 2.

Riešenie. Zostavme postavu, ktorej plochu budeme musieť vypočítať.

y \u003d x 2 + 1 je parabola, ktorej vetvy smerujú nahor a parabola je posunutá nahor o jednu jednotku vzhľadom na os O y (obrázok 1).

Obrázok 1. Graf funkcie y = x 2 + 1

Úloha číslo 2. Vypočítajte plochu ohraničenú čiarami y \u003d x 2 - 1, y \u003d 0 v rozsahu od 0 do 1.


Riešenie. Grafom tejto funkcie je parabola vetvy, ktorá smeruje nahor, pričom parabola je voči osi O y posunutá nadol o jednu jednotku (obrázok 2).

Obrázok 2. Graf funkcie y \u003d x 2 - 1


Úloha číslo 3. Vytvorte nákres a vypočítajte plochu figúry ohraničenú čiarami

y = 8 + 2x - x 2 a y = 2x - 4.

Riešenie. Prvá z týchto dvoch čiar je parabola s vetvami smerujúcimi nadol, pretože koeficient na x 2 je záporný, a druhá čiara je priamka pretínajúca obe súradnicové osi.

Na zostrojenie paraboly nájdime súradnice jej vrcholu: y'=2 – 2x; 2 – 2x = 0, x = 1 – vrchol x os; y(1) = 8 + 2∙1 – 1 2 = 9 je jeho ordináta, N(1;9) je jeho vrchol.

Teraz nájdeme priesečníky paraboly a priamky riešením sústavy rovníc:

Vyrovnanie pravých strán rovnice, ktorej ľavé strany sú rovnaké.

Získame 8 + 2x - x 2 \u003d 2x - 4 alebo x 2 - 12 \u003d 0, odkiaľ .

Body sú teda priesečníky paraboly a priamky (obrázok 1).


Obrázok 3 Grafy funkcií y = 8 + 2x – x 2 a y = 2x – 4

Zostrojme priamku y = 2x - 4. Prechádza bodmi (0;-4), (2; 0) na súradnicových osiach.

Na zostavenie paraboly môžete mať aj jej priesečníky s osou 0x, teda korene rovnice 8 + 2x - x 2 = 0 alebo x 2 - 2x - 8 = 0. Podľa Vietovej vety je ľahko nájsť jeho korene: x 1 = 2, x 2 = štyri.

Obrázok 3 zobrazuje obrazec (parabolický segment M1N M2) ohraničený týmito čiarami.

Druhou časťou problému je nájsť oblasť tohto obrázku. Jeho obsah možno nájsť pomocou určitého integrálu pomocou vzorca .

Vzhľadom na túto podmienku dostaneme integrál:

2 Výpočet objemu rotačného telesa

Objem tela získaný z rotácie krivky y \u003d f (x) okolo osi O x sa vypočíta podľa vzorca:

Pri otáčaní okolo osi Oy vzorec vyzerá takto:

Úloha číslo 4. Určte objem tela získaného rotáciou krivočiareho lichobežníka ohraničeného priamkami x \u003d 0 x \u003d 3 a krivkou y \u003d okolo osi O x.

Riešenie. Zostavme výkres (obrázok 4).

Obrázok 4. Graf funkcie y =

Požadovaný objem sa rovná


Úloha číslo 5. Vypočítajte objem telesa získaný z rotácie krivočiareho lichobežníka ohraničeného krivkou y = x 2 a priamkami y = 0 a y = 4 okolo osi O y .

Riešenie. Máme:

Kontrolné otázky

V tomto článku sa dozviete, ako nájsť oblasť obrázku ohraničenú čiarami pomocou integrálnych výpočtov. Prvýkrát sa s formulovaním takéhoto problému stretávame na strednej škole, keď je práve ukončené štúdium určitých integrálov a je čas začať s geometrickým výkladom získaných poznatkov v praxi.

Čo je teda potrebné na úspešné vyriešenie problému nájdenia oblasti obrázku pomocou integrálov:

  • Schopnosť správne kresliť kresby;
  • Schopnosť riešiť určitý integrál pomocou známeho Newtonovho-Leibnizovho vzorca;
  • Možnosť „vidieť“ výnosnejšie riešenie – t.j. pochopiť, ako bude v tomto alebo tom prípade pohodlnejšie vykonať integráciu? Pozdĺž osi x (OX) alebo osi y (OY)?
  • Kde bez správnych výpočtov?) To zahŕňa pochopenie toho, ako vyriešiť tento iný typ integrálov a správne numerické výpočty.

Algoritmus na riešenie problému výpočtu plochy obrazca ohraničeného čiarami:

1. Vytvárame výkres. Je vhodné to urobiť na kus papiera v klietke vo veľkom meradle. Ceruzkou nad každým grafom podpisujeme názov tejto funkcie. Podpis grafov sa vykonáva výlučne pre pohodlie ďalších výpočtov. Po prijatí grafu požadovaného čísla bude vo väčšine prípadov okamžite jasné, ktoré integračné limity sa použijú. Úlohu teda riešime graficky. Stáva sa však, že hodnoty limitov sú zlomkové alebo iracionálne. Preto môžete vykonať ďalšie výpočty, prejdite na druhý krok.

2. Ak integračné limity nie sú explicitne nastavené, nájdeme medzi sebou priesečníky grafov a uvidíme, či sa naše grafické riešenie zhoduje s analytickým.

3. Ďalej musíte analyzovať výkres. V závislosti od toho, ako sú umiestnené grafy funkcií, existujú rôzne prístupy k nájdeniu oblasti obrázku. Zvážte rôzne príklady hľadania oblasti obrazca pomocou integrálov.

3.1. Najklasickejšia a najjednoduchšia verzia problému je, keď potrebujete nájsť oblasť krivočiareho lichobežníka. Čo je to krivočiary lichobežník? Toto je plochý obrazec ohraničený osou x (y=0), rovný x = a, x = b a ľubovoľná krivka súvislá na intervale od a predtým b. Toto číslo zároveň nie je záporné a nenachádza sa nižšie ako os x. V tomto prípade sa plocha krivočiareho lichobežníka numericky rovná určitému integrálu vypočítanému pomocou vzorca Newton-Leibniz:

Príklad 1 y = x2 - 3x + 3, x = 1, x = 3, y = 0.

Aké čiary definujú postavu? Máme parabolu y = x2 - 3x + 3, ktorá sa nachádza nad osou OH, je nezáporné, pretože všetky body tejto paraboly sú kladné. Ďalej, dané rovné čiary x = 1 a x = 3 ktoré prebiehajú rovnobežne s osou OU, sú ohraničujúce čiary obrázku vľavo a vpravo. Dobre y = 0, ona je os x, ktorá obmedzuje postavu zdola. Výsledný obrázok je vytieňovaný, ako je vidieť na obrázku vľavo. V takom prípade môžete problém okamžite začať riešiť. Pred nami je jednoduchý príklad krivočiareho lichobežníka, ktorý potom riešime pomocou Newtonovho-Leibnizovho vzorca.

3.2. V predchádzajúcom odseku 3.1 bol analyzovaný prípad, keď je krivočiary lichobežník umiestnený nad osou x. Teraz zvážte prípad, keď sú podmienky problému rovnaké, okrem toho, že funkcia leží pod osou x. K štandardnému Newton-Leibnizovmu vzorcu sa pridáva mínus. Ako vyriešiť takýto problém, zvážime ďalej.

Príklad 2 . Vypočítajte plochu obrázku ohraničenú čiarami y=x2+6x+2, x=-4, x=-1, y=0.

V tomto príklade máme parabolu y=x2+6x+2, ktorý vychádza pod osou OH, rovný x=-4, x=-1, y=0. Tu y = 0 obmedzuje požadovanú hodnotu zhora. Priamy x = -4 a x = -1 toto sú hranice, v rámci ktorých sa bude počítať určitý integrál. Princíp riešenia problému nájdenia oblasti obrázku sa takmer úplne zhoduje s príkladom číslo 1. Jediný rozdiel je v tom, že daná funkcia nie je kladná a je tiež spojitá na intervale [-4; -1] . Čo neznamená pozitívne? Ako je zrejmé z obrázku, obrazec, ktorý leží v danom x, má výlučne „záporné“ súradnice, čo musíme vidieť a zapamätať si pri riešení úlohy. Hľadáme oblasť postavy pomocou vzorca Newton-Leibniz, iba so znamienkom mínus na začiatku.

Článok nie je dokončený.

Teraz prejdeme k úvahám o aplikáciách integrálneho počtu. V tejto lekcii budeme analyzovať typickú a najbežnejšiu úlohu. výpočet plochy plochej postavy pomocou určitého integrálu. Konečne všetci, ktorí hľadajú zmysel vo vyššej matematike – nech ho nájdu. Nikdy nevieš. V skutočnom živote budete musieť priblížiť letnú chatu so základnými funkciami a nájsť jej oblasť pomocou určitého integrálu.

Ak chcete úspešne zvládnuť materiál, musíte:

1) Pochopte neurčitý integrál aspoň na strednej úrovni. Preto by si figuríny mali lekciu najskôr prečítať nie.

2) Byť schopný použiť Newtonov-Leibnizov vzorec a vypočítať určitý integrál. S určitými integrálmi na stránke môžete nadviazať vrúcne priateľské vzťahy Určitý integrál. Príklady riešení. Úloha "vypočítať plochu pomocou určitého integrálu" vždy zahŕňa konštrukciu výkresu, preto budú naliehavou otázkou aj vaše vedomosti a zručnosti v kreslení. Minimálne musí byť človek schopný postaviť priamku, parabolu a hyperbolu.

Začnime s krivočiarym lichobežníkom. Krivkový lichobežník je plochý útvar ohraničený grafom nejakej funkcie r = f(X), os VÔL a linky X = a; X = b.

Plocha krivočiareho lichobežníka sa číselne rovná určitému integrálu

Akýkoľvek určitý integrál (ktorý existuje) má veľmi dobrý geometrický význam. Na lekcii Určitý integrál. Príklady riešení povedali sme, že určitý integrál je číslo. A teraz je čas uviesť ďalší užitočný fakt. Z hľadiska geometrie je určitým integrálom PLOCHA. teda určitý integrál (ak existuje) geometricky zodpovedá ploche nejakého obrázku. Zvážte určitý integrál

Integrand

definuje krivku v rovine (v prípade potreby ju možno nakresliť) a samotný určitý integrál sa numericky rovná ploche zodpovedajúceho krivočiareho lichobežníka.



Príklad 1

, , , .

Toto je typická úloha. Najdôležitejším bodom rozhodnutia je konštrukcia výkresu. Okrem toho musí byť vytvorený výkres SPRÁVNY.

Pri zostavovaní plánu odporúčam nasledujúce poradie: najprv je lepšie zostaviť všetky čiary (ak existujú) a len po- paraboly, hyperboly, grafy iných funkcií. Techniku ​​výstavby bod po bode nájdete v referenčnom materiáli Grafy a vlastnosti elementárnych funkcií. Nájdete tam aj materiál, ktorý je veľmi užitočný v súvislosti s našou lekciou - ako rýchlo postaviť parabolu.

V tomto probléme môže riešenie vyzerať takto.

Urobme nákres (všimnite si, že rovnica r= 0 určuje os VÔL):

Krivočiary lichobežník šrafovať nebudeme, je zrejmé, o akej oblasti tu hovoríme. Riešenie pokračuje takto:

Na intervale [-2; 1] funkčný graf r = X 2 + 2 sa nachádza cez osVÔL, preto:

odpoveď: .

Kto má ťažkosti s výpočtom určitého integrálu a aplikáciou Newtonovho-Leibnizovho vzorca

,

odkazovať na prednášku Určitý integrál. Príklady riešení. Po dokončení úlohy je vždy užitočné pozrieť sa na výkres a zistiť, či je odpoveď skutočná. V tomto prípade „od oka“ spočítame počet buniek na výkrese - no, napíše sa asi 9, zdá sa, že je to pravda. Je úplne jasné, že ak by sme mali povedzme odpoveď: 20 štvorcových jednotiek, tak sa evidentne niekde stala chyba – 20 buniek sa evidentne nezmestí do predmetného čísla, nanajvýš tucet. Ak bola odpoveď záporná, úloha bola tiež vyriešená nesprávne.

Príklad 2

Vypočítajte plochu obrázku ohraničenú čiarami xy = 4, X = 2, X= 4 a os VÔL.

Toto je príklad „urob si sám“. Úplné riešenie a odpoveď na konci hodiny.

Čo robiť, ak sa nachádza krivočiary lichobežník pod nápravouVÔL?

Príklad 3

Vypočítajte plochu obrázku ohraničenú čiarami r = e-x, X= 1 a súradnicové osi.

Riešenie: Urobme kresbu:

Ak krivočiary lichobežník úplne pod nápravou VÔL , potom jeho oblasť možno nájsť podľa vzorca:

V tomto prípade:

.

Pozor! Tieto dva typy úloh by sa nemali zamieňať:

1) Ak ste požiadaní, aby ste vyriešili len určitý integrál bez akéhokoľvek geometrického významu, potom môže byť záporný.

2) Ak ste požiadaní, aby ste našli plochu obrazca pomocou určitého integrálu, potom je plocha vždy kladná! Preto sa v práve uvažovanom vzorci objavuje mínus.

V praxi sa najčastejšie figúrka nachádza v hornej aj dolnej polrovine, a preto od najjednoduchších školských úloh prechádzame k zmysluplnejším príkladom.

Príklad 4

Nájdite plochu rovinnej postavy ohraničenú čiarami r = 2XX 2 , r = -X.

Riešenie: Najprv musíte urobiť kresbu. Pri konštrukcii výkresu v plošných úlohách nás najviac zaujímajú priesečníky čiar. Nájdite priesečníky paraboly r = 2XX 2 a rovno r = -X. Dá sa to urobiť dvoma spôsobmi. Prvý spôsob je analytický. Riešime rovnicu:

Čiže spodná hranica integrácie a= 0, horná hranica integrácie b= 3. Často je výhodnejšie a rýchlejšie konštruovať čiary bod po bode, pričom hranice integrácie sa zistia akoby „sami od seba“. Analytická metóda hľadania limitov sa však stále niekedy musí použiť, ak je napríklad graf dostatočne veľký alebo závitová konštrukcia neodhalila limity integrácie (môžu byť zlomkové alebo iracionálne). Vraciame sa k našej úlohe: racionálnejšie je najprv zostrojiť priamku a až potom parabolu. Urobme si kresbu:

Opakujeme, že pri bodovej konštrukcii sa hranice integrácie najčastejšie zisťujú „automaticky“.

A teraz pracovný vzorec:

Ak je v intervale [ a; b] nejaká nepretržitá funkcia f(X) väčší alebo rovný nejaká nepretržitá funkcia g(X), potom oblasť zodpovedajúceho obrázku možno nájsť podľa vzorca:

Tu už nie je potrebné premýšľať, kde sa postava nachádza - nad osou alebo pod osou, ale záleží na tom, ktorý graf je NAHOR(vo vzťahu k inému grafu), a ktorý je DOLE.

V uvažovanom príklade je zrejmé, že na segmente sa parabola nachádza nad priamkou, a preto od 2. XX 2 treba odpočítať - X.

Dokončenie riešenia môže vyzerať takto:

Požadovaná hodnota je obmedzená parabolou r = 2XX 2 horné a rovné r = -X zdola.

V segmente 2 XX 2 ≥ -X. Podľa zodpovedajúceho vzorca:

odpoveď: .

V skutočnosti je školský vzorec pre oblasť krivočiareho lichobežníka v dolnej polrovine (pozri príklad č. 3) špeciálnym prípadom vzorca

.

Od os VÔL je dané rovnicou r= 0 a graf funkcie g(X) sa nachádza pod osou VÔL, potom

.

A teraz pár príkladov pre nezávislé riešenie

Príklad 5

Príklad 6

Nájdite oblasť obrázku ohraničenú čiarami

Pri riešení úloh na výpočet plochy pomocou určitého integrálu sa občas stane vtipná príhoda. Výkres bol urobený správne, výpočty boli správne, ale v dôsledku nepozornosti ... našiel oblasť nesprávnej postavy.

Príklad 7

Najprv nakreslíme:

Postava, ktorej oblasť potrebujeme nájsť, je vytieňovaná modrou farbou.(pozorne sa pozrite na stav - ako je postava obmedzená!). V praxi sa však kvôli nepozornosti často rozhodnú, že musia nájsť oblasť postavy, ktorá je zatienená zelenou farbou!

Tento príklad je užitočný aj v tom, že sa v ňom plocha obrázku počíta pomocou dvoch určitých integrálov. naozaj:

1) Na segmente [-1; 1] nad nápravou VÔL graf je rovný r = X+1;

2) Na segmente nad osou VÔL nachádza sa graf hyperboly r = (2/X).

Je celkom zrejmé, že oblasti sa môžu (a mali by) pridať, preto:

odpoveď:

Príklad 8

Vypočítajte plochu obrázku ohraničenú čiarami

Uveďme rovnice v „školskom“ tvare

a nakreslite čiaru:

Z nákresu je vidieť, že naša horná hranica je „dobrá“: b = 1.

Aká je však spodná hranica? Je jasné, že to nie je celé číslo, ale čo?

Možno, a= (-1/3)? Ale kde je záruka, že výkres je vyrobený s dokonalou presnosťou, môže sa to ukázať a= (-1/4). Čo ak sme ten graf vôbec nepochopili?

V takýchto prípadoch je potrebné venovať viac času a analyticky spresniť hranice integrácie.

Nájdite priesečníky grafov

Aby sme to dosiahli, riešime rovnicu:

.

v dôsledku toho a=(-1/3).

Ďalšie riešenie je triviálne. Hlavnou vecou nie je zmiasť sa v zámenách a znakoch. Výpočty tu nie sú najjednoduchšie. Na segmente

, ,

podľa zodpovedajúceho vzorca:

odpoveď:

Na záver lekcie zvážime dve ťažšie úlohy.

Príklad 9

Vypočítajte plochu obrázku ohraničenú čiarami

Riešenie: Nakreslite tento obrázok na výkres.

Ak chcete nakresliť kresbu bod po bode, musíte poznať vzhľad sínusoidy. Vo všeobecnosti je užitočné poznať grafy všetkých elementárnych funkcií, ako aj niektoré hodnoty sínusu. Nájdete ich v tabuľke hodnôt goniometrické funkcie. V niektorých prípadoch (napríklad v tomto prípade) je dovolené zostaviť schematický výkres, na ktorom musia byť grafy a integračné limity zobrazené v zásade správne.

Problémy s integračnými limitmi tu nie sú, vyplývajú priamo z podmienky:

- "x" sa zmení z nuly na "pi". Robíme ďalšie rozhodnutie:

Na segmente je graf funkcie r= hriech 3 X umiestnený nad osou VÔL, preto:

(1) V lekcii môžete vidieť, ako sú sínusy a kosínusy integrované do nepárnych mocnín Integrály goniometrických funkcií. Odštipneme jeden sínus.

(2) Vo formulári používame základnú goniometrickú identitu

(3) Zmeňme premennú t= cos X, potom: umiestnené nad osou , takže:

.

.

Poznámka: všimnite si, ako sa berie integrál dotyčnice v kocke, tu sa používa dôsledok základnej goniometrickej identity

.