एक जटिल फलन का व्युत्पन्न बराबर होता है। एक जटिल फ़ंक्शन का व्युत्पन्न. शक्ति-घातांकीय फलन का व्युत्पन्न

गणित में भौतिक समस्याओं या उदाहरणों को हल करना व्युत्पन्न और इसकी गणना करने की विधियों के ज्ञान के बिना पूरी तरह से असंभव है। गणितीय विश्लेषण में व्युत्पन्न सबसे महत्वपूर्ण अवधारणाओं में से एक है। हमने आज का लेख इस मूलभूत विषय पर समर्पित करने का निर्णय लिया। व्युत्पन्न क्या है, इसका भौतिक और ज्यामितीय अर्थ क्या है, किसी फ़ंक्शन के व्युत्पन्न की गणना कैसे करें? इन सभी प्रश्नों को एक में जोड़ा जा सकता है: व्युत्पन्न को कैसे समझें?

व्युत्पन्न का ज्यामितीय और भौतिक अर्थ

कोई समारोह हो एफ(एक्स) , एक निश्चित अंतराल में निर्दिष्ट (ए, बी) . बिंदु x और x0 इस अंतराल से संबंधित हैं। जब x बदलता है, तो फ़ंक्शन स्वयं बदल जाता है। तर्क बदलना - उसके मूल्यों में अंतर x-x0 . यह अंतर इस प्रकार लिखा गया है डेल्टा एक्स और इसे तर्क वृद्धि कहा जाता है। किसी फ़ंक्शन का परिवर्तन या वृद्धि दो बिंदुओं पर फ़ंक्शन के मानों के बीच का अंतर है। व्युत्पन्न की परिभाषा:

किसी बिंदु पर फ़ंक्शन का व्युत्पन्न किसी दिए गए बिंदु पर फ़ंक्शन की वृद्धि के अनुपात की सीमा है, जब तर्क शून्य हो जाता है।

अन्यथा इसे इस प्रकार लिखा जा सकता है:

ऐसी सीमा खोजने का क्या मतलब है? और यहाँ यह है:

किसी बिंदु पर किसी फ़ंक्शन का व्युत्पन्न OX अक्ष और किसी दिए गए बिंदु पर फ़ंक्शन के ग्राफ़ के स्पर्शरेखा के बीच के कोण की स्पर्शरेखा के बराबर होता है।


व्युत्पन्न का भौतिक अर्थ: समय के संबंध में पथ का व्युत्पन्न सरलरेखीय गति की गति के बराबर है।

दरअसल, स्कूल के दिनों से ही हर कोई जानता है कि गति एक विशेष मार्ग है x=f(t) और समय टी . एक निश्चित अवधि में औसत गति:

किसी समय में गति की गति का पता लगाना टी0 आपको सीमा की गणना करने की आवश्यकता है:

नियम एक: एक स्थिरांक निर्धारित करें

स्थिरांक को व्युत्पन्न चिन्ह से निकाला जा सकता है। इसके अलावा, यह किया जाना चाहिए. गणित में उदाहरण हल करते समय इसे एक नियम के रूप में लें - यदि आप किसी अभिव्यक्ति को सरल बना सकते हैं, तो उसे सरल बनाना सुनिश्चित करें .

उदाहरण। आइए व्युत्पन्न की गणना करें:

नियम दो: कार्यों के योग का व्युत्पन्न

दो कार्यों के योग का व्युत्पन्न इन कार्यों के व्युत्पन्नों के योग के बराबर होता है। कार्यों के अंतर के व्युत्पन्न के लिए भी यही सच है।

हम इस प्रमेय का प्रमाण नहीं देंगे, बल्कि एक व्यावहारिक उदाहरण पर विचार करेंगे।

फ़ंक्शन का व्युत्पन्न खोजें:

नियम तीन: कार्यों के उत्पाद का व्युत्पन्न

दो भिन्न कार्यों के उत्पाद के व्युत्पन्न की गणना सूत्र द्वारा की जाती है:

उदाहरण: किसी फ़ंक्शन का व्युत्पन्न खोजें:

समाधान:

यहां जटिल फलनों के व्युत्पन्नों की गणना के बारे में बात करना महत्वपूर्ण है। एक जटिल फ़ंक्शन का व्युत्पन्न मध्यवर्ती तर्क के संबंध में इस फ़ंक्शन के व्युत्पन्न के उत्पाद के बराबर है और स्वतंत्र चर के संबंध में मध्यवर्ती तर्क का व्युत्पन्न है।

उपरोक्त उदाहरण में हमें यह अभिव्यक्ति मिलती है:

इस मामले में, मध्यवर्ती तर्क पाँचवीं घात से 8x है। ऐसी अभिव्यक्ति के व्युत्पन्न की गणना करने के लिए, हम पहले मध्यवर्ती तर्क के संबंध में बाहरी फ़ंक्शन के व्युत्पन्न की गणना करते हैं, और फिर स्वतंत्र चर के संबंध में मध्यवर्ती तर्क के व्युत्पन्न से गुणा करते हैं।

नियम चार: दो कार्यों के भागफल का व्युत्पन्न

दो फलनों के भागफल का अवकलज ज्ञात करने का सूत्र:

हमने शुरुआत से डमी के लिए डेरिवेटिव के बारे में बात करने की कोशिश की। यह विषय उतना सरल नहीं है जितना लगता है, इसलिए सावधान रहें: उदाहरणों में अक्सर खामियां होती हैं, इसलिए डेरिवेटिव की गणना करते समय सावधान रहें।

इस और अन्य विषयों पर किसी भी प्रश्न के लिए, आप छात्र सेवा से संपर्क कर सकते हैं। थोड़े समय में, हम आपको सबसे कठिन परीक्षा को हल करने और कार्यों को समझने में मदद करेंगे, भले ही आपने पहले कभी व्युत्पन्न गणना नहीं की हो।

याद रखना बहुत आसान है.

ठीक है, आइए ज्यादा दूर न जाएं, आइए तुरंत व्युत्क्रम फलन पर विचार करें। कौन सा फलन घातांकीय फलन का व्युत्क्रम है? लघुगणक:

हमारे मामले में, आधार संख्या है:

ऐसे लघुगणक (अर्थात, आधार वाला लघुगणक) को "प्राकृतिक" कहा जाता है, और हम इसके लिए एक विशेष संकेतन का उपयोग करते हैं: हम इसके बजाय लिखते हैं।

यह किसके बराबर है? बिल्कुल, ।

प्राकृतिक लघुगणक का व्युत्पन्न भी बहुत सरल है:

उदाहरण:

  1. फ़ंक्शन का व्युत्पन्न खोजें।
  2. फ़ंक्शन का व्युत्पन्न क्या है?

उत्तर: व्युत्पन्न परिप्रेक्ष्य से घातांकीय और प्राकृतिक लघुगणक विशिष्ट रूप से सरल कार्य हैं। किसी भी अन्य आधार के साथ घातांकीय और लघुगणकीय कार्यों का एक अलग व्युत्पन्न होगा, जिसका विश्लेषण हम विभेदन के नियमों से गुजरने के बाद बाद में करेंगे।

विभेदीकरण के नियम

किस चीज़ के नियम? फिर से एक नया शब्द, फिर?!...

भेदभावव्युत्पन्न खोजने की प्रक्रिया है।

बस इतना ही। इस प्रक्रिया को एक शब्द में आप और क्या कह सकते हैं? व्युत्पन्न नहीं... गणितज्ञ अंतर को किसी फ़ंक्शन की समान वृद्धि कहते हैं। यह शब्द लैटिन के डिफरेंशिया - अंतर से आया है। यहाँ।

इन सभी नियमों को प्राप्त करते समय, हम दो फ़ंक्शन का उपयोग करेंगे, उदाहरण के लिए, और। हमें उनकी वेतन वृद्धि के लिए सूत्रों की भी आवश्यकता होगी:

कुल मिलाकर 5 नियम हैं.

स्थिरांक को व्युत्पन्न चिन्ह से हटा दिया जाता है।

यदि - कोई अचर संख्या (स्थिर), तो.

जाहिर है, यह नियम अंतर के लिए भी काम करता है:।

आइए इसे साबित करें. इसे रहने दो, या सरल।

उदाहरण।

फ़ंक्शंस के व्युत्पन्न खोजें:

  1. एक बिंदु पर;
  2. एक बिंदु पर;
  3. एक बिंदु पर;
  4. बिंदु पर।

समाधान:

  1. (व्युत्पन्न सभी बिंदुओं पर समान है, क्योंकि यह एक रैखिक कार्य है, याद रखें?);

उत्पाद का व्युत्पन्न

यहां सब कुछ समान है: आइए एक नया फ़ंक्शन पेश करें और इसकी वृद्धि ढूंढें:

व्युत्पन्न:

उदाहरण:

  1. कार्यों के व्युत्पन्न खोजें और;
  2. किसी बिंदु पर फ़ंक्शन का व्युत्पन्न खोजें।

समाधान:

एक घातीय फलन का व्युत्पन्न

अब आपका ज्ञान यह सीखने के लिए पर्याप्त है कि केवल घातांक ही नहीं, बल्कि किसी भी घातीय फलन का व्युत्पन्न कैसे खोजा जाए (क्या आप अभी तक भूल गए हैं कि वह क्या है?)।

तो, कुछ संख्या कहां है.

हम पहले से ही फ़ंक्शन के व्युत्पन्न को जानते हैं, तो आइए अपने फ़ंक्शन को एक नए आधार पर लाने का प्रयास करें:

ऐसा करने के लिए, हम एक सरल नियम का उपयोग करेंगे:। तब:

ख़ैर, यह काम कर गया। अब व्युत्पन्न खोजने का प्रयास करें, और यह न भूलें कि यह फ़ंक्शन जटिल है।

घटित?

यहां, स्वयं जांचें:

सूत्र एक घातांक के व्युत्पन्न के समान निकला: जैसा था, वैसा ही रहता है, केवल एक कारक दिखाई देता है, जो सिर्फ एक संख्या है, लेकिन चर नहीं।

उदाहरण:
फ़ंक्शंस के व्युत्पन्न खोजें:

उत्तर:

यह मात्र एक संख्या है जिसकी गणना बिना कैलकुलेटर के नहीं की जा सकती अर्थात इसे सरल रूप में नहीं लिखा जा सकता। इसलिए, हम इसे उत्तर में इसी रूप में छोड़ते हैं।

    ध्यान दें कि यहां दो कार्यों का भागफल है, इसलिए हम संबंधित विभेदन नियम लागू करते हैं:

    इस उदाहरण में, दो कार्यों का उत्पाद:

लघुगणकीय फलन का व्युत्पन्न

यह यहाँ समान है: आप पहले से ही प्राकृतिक लघुगणक के व्युत्पन्न को जानते हैं:

इसलिए, एक अलग आधार के साथ एक मनमाना लघुगणक खोजने के लिए, उदाहरण के लिए:

हमें इस लघुगणक को आधार तक कम करने की आवश्यकता है। आप लघुगणक का आधार कैसे बदलते हैं? मुझे आशा है कि आपको यह सूत्र याद होगा:

केवल अब हम इसके बजाय लिखेंगे:

हर केवल एक अचर है (एक अचर संख्या, बिना किसी चर के)। व्युत्पन्न बहुत सरलता से प्राप्त किया जाता है:

यूनिफाइड स्टेट परीक्षा में घातीय और लघुगणकीय कार्यों के व्युत्पन्न लगभग कभी नहीं पाए जाते हैं, लेकिन उन्हें जानने में कोई दिक्कत नहीं होगी।

एक जटिल फ़ंक्शन का व्युत्पन्न.

"जटिल कार्य" क्या है? नहीं, यह लघुगणक नहीं है, और चापस्पर्शज्या भी नहीं है। इन कार्यों को समझना मुश्किल हो सकता है (हालांकि यदि आपको लघुगणक कठिन लगता है, तो "लघुगणक" विषय पढ़ें और आप ठीक हो जाएंगे), लेकिन गणितीय दृष्टिकोण से, "जटिल" शब्द का अर्थ "कठिन" नहीं है।

एक छोटे कन्वेयर बेल्ट की कल्पना करें: दो लोग बैठे हैं और कुछ वस्तुओं के साथ कुछ क्रियाएं कर रहे हैं। उदाहरण के लिए, पहला चॉकलेट बार को रैपर में लपेटता है, और दूसरा उसे रिबन से बांधता है। परिणाम एक समग्र वस्तु है: एक चॉकलेट बार लपेटा हुआ और रिबन से बंधा हुआ। चॉकलेट बार खाने के लिए, आपको उल्टे क्रम में उल्टे कदम उठाने होंगे।

आइए एक समान गणितीय पाइपलाइन बनाएं: पहले हम किसी संख्या की कोज्या ज्ञात करेंगे, और फिर परिणामी संख्या का वर्ग करेंगे। तो, हमें एक नंबर (चॉकलेट) दिया जाता है, मैं उसका कोसाइन (रैपर) ढूंढता हूं, और फिर जो मुझे मिला उसका आप वर्ग कर देते हैं (इसे रिबन से बांध देते हैं)। क्या हुआ? समारोह। यह एक जटिल फ़ंक्शन का एक उदाहरण है: जब, इसका मान ज्ञात करने के लिए, हम पहली क्रिया सीधे वेरिएबल के साथ करते हैं, और फिर दूसरी क्रिया पहली क्रिया के परिणाम के साथ करते हैं।

दूसरे शब्दों में, एक जटिल फ़ंक्शन एक ऐसा फ़ंक्शन है जिसका तर्क एक अन्य फ़ंक्शन है: .

हमारे उदाहरण के लिए, .

हम समान चरणों को उल्टे क्रम में आसानी से कर सकते हैं: पहले आप इसका वर्ग करें, और फिर मैं परिणामी संख्या की कोज्या ढूंढता हूं:। यह अनुमान लगाना आसान है कि परिणाम लगभग हमेशा अलग होगा। जटिल कार्यों की एक महत्वपूर्ण विशेषता: जब क्रियाओं का क्रम बदलता है, तो फ़ंक्शन भी बदल जाता है।

दूसरा उदाहरण: (वही बात)। .

जो क्रिया हम अंतिम बार करेंगे वही कहलाएगी "बाहरी" फ़ंक्शन, और कार्रवाई पहले की गई - तदनुसार "आंतरिक" फ़ंक्शन(ये अनौपचारिक नाम हैं, मैं इनका उपयोग केवल सामग्री को सरल भाषा में समझाने के लिए करता हूँ)।

स्वयं यह निर्धारित करने का प्रयास करें कि कौन सा कार्य बाहरी है और कौन सा आंतरिक:

उत्तर:आंतरिक और बाहरी कार्यों को अलग करना चर बदलने के समान है: उदाहरण के लिए, किसी फ़ंक्शन में

  1. हम पहले कौन सा कार्य करेंगे? सबसे पहले, आइए साइन की गणना करें, और उसके बाद ही इसे घन करें। इसका मतलब यह है कि यह एक आंतरिक कार्य है, लेकिन एक बाहरी कार्य है।
    और मूल कार्य उनकी रचना है: .
  2. आंतरिक: ; बाहरी: ।
    इंतिहान: ।
  3. आंतरिक: ; बाहरी: ।
    इंतिहान: ।
  4. आंतरिक: ; बाहरी: ।
    इंतिहान: ।
  5. आंतरिक: ; बाहरी: ।
    इंतिहान: ।

हम वेरिएबल बदलते हैं और एक फ़ंक्शन प्राप्त करते हैं।

खैर, अब हम अपना चॉकलेट बार निकालेंगे और व्युत्पन्न की तलाश करेंगे। प्रक्रिया हमेशा उलटी होती है: पहले हम बाहरी फ़ंक्शन के व्युत्पन्न की तलाश करते हैं, फिर हम परिणाम को आंतरिक फ़ंक्शन के व्युत्पन्न से गुणा करते हैं। मूल उदाहरण के संबंध में, यह इस तरह दिखता है:

एक और उदाहरण:

तो, आइए अंततः आधिकारिक नियम बनाएं:

किसी जटिल फ़ंक्शन का व्युत्पन्न खोजने के लिए एल्गोरिदम:

यह सरल लगता है, है ना?

आइए उदाहरणों से जांचें:

समाधान:

1) आंतरिक: ;

बाहरी: ;

2) आंतरिक: ;

(अभी तक इसे काटने की कोशिश मत करो! कोसाइन के नीचे से कुछ भी नहीं निकलता है, याद है?)

3) आंतरिक: ;

बाहरी: ;

यह तुरंत स्पष्ट है कि यह एक तीन-स्तरीय जटिल कार्य है: आखिरकार, यह पहले से ही अपने आप में एक जटिल कार्य है, और हम इसमें से जड़ भी निकालते हैं, यानी हम तीसरी क्रिया करते हैं (चॉकलेट को एक आवरण में रखें) और ब्रीफकेस में एक रिबन के साथ)। लेकिन डरने का कोई कारण नहीं है: हम अभी भी इस फ़ंक्शन को हमेशा की तरह उसी क्रम में "अनपैक" करेंगे: अंत से।

अर्थात्, पहले हम मूल में अंतर करते हैं, फिर कोज्या में, और उसके बाद ही कोष्ठक में व्यंजक में। और फिर हम इसे सब गुणा करते हैं।

ऐसे मामलों में, कार्यों को क्रमांकित करना सुविधाजनक होता है। अर्थात्, आइए कल्पना करें कि हम क्या जानते हैं। इस अभिव्यक्ति के मूल्य की गणना करने के लिए हम किस क्रम में क्रियाएं करेंगे? आइए एक उदाहरण देखें:

कार्रवाई जितनी देर से की जाएगी, संबंधित कार्य उतना ही अधिक "बाहरी" होगा। क्रियाओं का क्रम पहले जैसा ही है:

यहां घोंसला बनाना आम तौर पर 4-स्तरीय होता है। आइये कार्रवाई की दिशा तय करें.

1. उग्र अभिव्यक्ति. .

2. जड़. .

3. ज्या. .

4. चौकोर. .

5. यह सब एक साथ रखना:

व्युत्पन्न. संक्षेप में मुख्य बातों के बारे में

किसी फ़ंक्शन का व्युत्पन्न- तर्क की एक अतिसूक्ष्म वृद्धि के लिए फ़ंक्शन की वृद्धि और तर्क की वृद्धि का अनुपात:

मूल व्युत्पन्न:

विभेदीकरण के नियम:

स्थिरांक को व्युत्पन्न चिन्ह से हटा दिया जाता है:

योग का व्युत्पन्न:

उत्पाद का व्युत्पन्न:

भागफल का व्युत्पन्न:

एक जटिल फ़ंक्शन का व्युत्पन्न:

किसी जटिल फ़ंक्शन का व्युत्पन्न खोजने के लिए एल्गोरिदम:

  1. हम "आंतरिक" फ़ंक्शन को परिभाषित करते हैं और इसका व्युत्पन्न ढूंढते हैं।
  2. हम "बाहरी" फ़ंक्शन को परिभाषित करते हैं और इसका व्युत्पन्न ढूंढते हैं।
  3. हम पहले और दूसरे बिंदु के परिणामों को गुणा करते हैं।

किसी जटिल फ़ंक्शन के व्युत्पन्न के लिए सूत्र का उपयोग करके व्युत्पन्न की गणना करने के उदाहरण दिए गए हैं।

सामग्री

यह सभी देखें: किसी जटिल फलन के अवकलज के सूत्र का प्रमाण

मूल सूत्र

यहां हम निम्नलिखित कार्यों के डेरिवेटिव की गणना के उदाहरण देते हैं:
; ; ; ; .

यदि किसी फ़ंक्शन को निम्नलिखित रूप में एक जटिल फ़ंक्शन के रूप में दर्शाया जा सकता है:
,
तो इसका व्युत्पन्न सूत्र द्वारा निर्धारित किया जाता है:
.
नीचे दिए गए उदाहरणों में, हम इस सूत्र को इस प्रकार लिखेंगे:
.
कहाँ ।
यहां, उपस्क्रिप्ट या, व्युत्पन्न चिह्न के नीचे स्थित, उन चर को दर्शाते हैं जिनके द्वारा भेदभाव किया जाता है।

आमतौर पर, डेरिवेटिव की तालिकाओं में, वेरिएबल x से फ़ंक्शन के डेरिवेटिव दिए जाते हैं। हालाँकि, x एक औपचारिक पैरामीटर है। वेरिएबल x को किसी अन्य वेरिएबल द्वारा प्रतिस्थापित किया जा सकता है। इसलिए, किसी फ़ंक्शन को किसी वेरिएबल से अलग करते समय, हम बस डेरिवेटिव की तालिका में, वेरिएबल x को वेरिएबल u में बदल देते हैं।

सरल उदाहरण

उदाहरण 1

किसी जटिल फलन का व्युत्पन्न ज्ञात कीजिए
.

आइए दिए गए फ़ंक्शन को समकक्ष रूप में लिखें:
.
डेरिवेटिव की तालिका में हम पाते हैं:
;
.

एक जटिल फलन के व्युत्पन्न के सूत्र के अनुसार, हमारे पास है:
.
यहाँ ।

उदाहरण 2

व्युत्पन्न खोजें
.

हम व्युत्पन्न चिह्न से स्थिरांक 5 निकालते हैं और व्युत्पन्न तालिका से हम पाते हैं:
.


.
यहाँ ।

उदाहरण 3

व्युत्पन्न खोजें
.

हम एक स्थिरांक निकालते हैं -1 व्युत्पन्न के चिह्न के लिए और व्युत्पन्न की तालिका से हम पाते हैं:
;
डेरिवेटिव की तालिका से हम पाते हैं:
.

हम एक जटिल फ़ंक्शन के व्युत्पन्न के लिए सूत्र लागू करते हैं:
.
यहाँ ।

अधिक जटिल उदाहरण

अधिक जटिल उदाहरणों में, हम एक जटिल फलन को विभेदित करने के नियम को कई बार लागू करते हैं। इस मामले में, हम अंत से व्युत्पन्न की गणना करते हैं। अर्थात्, हम फ़ंक्शन को उसके घटक भागों में तोड़ते हैं और उपयोग करके सबसे सरल भागों के व्युत्पन्न ढूंढते हैं डेरिवेटिव की तालिका. हम भी प्रयोग करते हैं योगों में अंतर करने के नियम, उत्पाद और अंश। फिर हम प्रतिस्थापन करते हैं और एक जटिल फ़ंक्शन के व्युत्पन्न के लिए सूत्र लागू करते हैं।

उदाहरण 4

व्युत्पन्न खोजें
.

आइए सूत्र का सबसे सरल भाग चुनें और उसका व्युत्पन्न ज्ञात करें। .



.
यहां हमने संकेतन का प्रयोग किया है
.

हम प्राप्त परिणामों का उपयोग करके मूल फ़ंक्शन के अगले भाग का व्युत्पन्न ढूंढते हैं। हम योग को अलग करने के लिए नियम लागू करते हैं:
.

एक बार फिर हम जटिल फलनों के विभेदन का नियम लागू करते हैं।

.
यहाँ ।

उदाहरण 5

फ़ंक्शन का व्युत्पन्न खोजें
.

आइए सूत्र का सबसे सरल भाग चुनें और डेरिवेटिव की तालिका से इसका व्युत्पन्न खोजें। .

हम जटिल कार्यों के विभेदन का नियम लागू करते हैं।
.
यहाँ
.

आइए प्राप्त परिणामों का उपयोग करके अगले भाग को अलग करें।
.
यहाँ
.

आइए अगले भाग को अलग करें।

.
यहाँ
.

अब हम वांछित फ़ंक्शन का व्युत्पन्न ढूंढते हैं।

.
यहाँ
.

यह सभी देखें:

यह पाठ "जटिल कार्यों का विभेदन" विषय पर समर्पित है। गणित में एकीकृत राज्य परीक्षा की तैयारी के अभ्यास से एक समस्या। यह पाठ जटिल कार्यों को विभेदित करने का अन्वेषण करता है। एक जटिल फ़ंक्शन के डेरिवेटिव की एक तालिका संकलित की जाती है। इसके अलावा, गणित में एकीकृत राज्य परीक्षा की तैयारी के अभ्यास से एक समस्या को हल करने का एक उदाहरण माना जाता है।

विषय: व्युत्पन्न

पाठ: एक जटिल कार्य को अलग करना। गणित में एकीकृत राज्य परीक्षा की तैयारी के लिए एक अभ्यास कार्य

जटिलसमारोहहम पहले ही अंतर कर चुके हैं, लेकिन तर्क एक रैखिक फ़ंक्शन था, अर्थात्, हम जानते हैं कि फ़ंक्शन को कैसे अलग किया जाए। उदाहरण के लिए, । अब, उसी तरह, हम एक जटिल फ़ंक्शन के व्युत्पन्न पाएंगे, जहां एक रैखिक फ़ंक्शन के बजाय कोई अन्य फ़ंक्शन हो सकता है।

चलिए फ़ंक्शन से शुरू करते हैं

इसलिए, हमने एक जटिल फ़ंक्शन से साइन का व्युत्पन्न पाया, जहां साइन का तर्क एक द्विघात फ़ंक्शन था।

यदि आपको किसी विशिष्ट बिंदु पर व्युत्पन्न का मान ज्ञात करने की आवश्यकता है, तो इस बिंदु को पाए गए व्युत्पन्न में प्रतिस्थापित किया जाना चाहिए।

तो, दो उदाहरणों में हमने देखा कि नियम कैसे काम करता है भेदभावजटिल कार्य.

2.

3. . आइए हम आपको यह याद दिला दें.

7.

8. .

इस प्रकार, हम इस स्तर पर जटिल कार्यों के विभेदन की तालिका को समाप्त करेंगे। इसके अलावा, निश्चित रूप से, इसे और भी अधिक सामान्यीकृत किया जाएगा, लेकिन अब व्युत्पन्न पर विशिष्ट समस्याओं पर चलते हैं।

एकीकृत राज्य परीक्षा की तैयारी के अभ्यास में, निम्नलिखित कार्य प्रस्तावित हैं।

किसी फ़ंक्शन का न्यूनतम ज्ञात करें .

ओडीजेड: .

आइए व्युत्पन्न खोजें। आइए हम इसे याद करें, .

आइए व्युत्पन्न को शून्य के बराबर करें। डॉट ODZ में शामिल है.

आइए हम अवकलज के स्थिर चिह्न के अंतराल (फ़ंक्शन की एकरसता के अंतराल) ज्ञात करें (चित्र 1 देखें)।

चावल। 1. किसी फ़ंक्शन के लिए एकरसता अंतराल .

आइए एक बिंदु को देखें और पता लगाएं कि क्या यह एक चरम बिंदु है। एक चरम का पर्याप्त संकेत यह है कि किसी बिंदु से गुजरने पर व्युत्पन्न संकेत बदल जाता है। इस मामले में, व्युत्पन्न संकेत बदलता है, जिसका अर्थ है कि यह एक चरम बिंदु है। चूँकि व्युत्पन्न का चिह्न "-" से "+" में बदल जाता है, तो यह न्यूनतम बिंदु है। आइए न्यूनतम बिंदु पर फ़ंक्शन का मान ज्ञात करें:। आइए एक आरेख बनाएं (चित्र 2 देखें)।

अंक 2। समारोह का चरम .

अंतराल पर - फलन घटता है, पर - फलन बढ़ता है, चरम बिंदु अद्वितीय होता है। फ़ंक्शन अपना सबसे छोटा मान केवल बिंदु पर लेता है।

पाठ के दौरान हमने जटिल कार्यों के विभेदन को देखा, एक तालिका संकलित की और एक जटिल कार्य को विभेदित करने के नियमों को देखा, और एकीकृत राज्य परीक्षा की तैयारी के अभ्यास से व्युत्पन्न का उपयोग करने का एक उदाहरण दिया।

1. बीजगणित और विश्लेषण की शुरुआत, ग्रेड 10 (दो भागों में)। सामान्य शिक्षा संस्थानों के लिए पाठ्यपुस्तक (प्रोफ़ाइल स्तर), संस्करण। ए जी मोर्दकोविच। -एम.: मेनेमोसिन, 2009.

2. बीजगणित और विश्लेषण की शुरुआत, ग्रेड 10 (दो भागों में)। शैक्षणिक संस्थानों के लिए समस्या पुस्तक (प्रोफ़ाइल स्तर), संस्करण। ए जी मोर्दकोविच। -एम.: मेनेमोसिने, 2007।

3. विलेनकिन एन.वाई.ए., इवाशेव-मुसातोव ओ.एस., श्वार्ट्सबर्ड एस.आई. कक्षा 10 के लिए बीजगणित और गणितीय विश्लेषण (गणित के गहन अध्ययन के साथ स्कूलों और कक्षाओं के छात्रों के लिए पाठ्यपुस्तक)।

4. गैलिट्स्की एम.एल., मोशकोविच एम.एम., श्वार्ट्सबर्ड एस.आई. बीजगणित और गणितीय विश्लेषण का गहन अध्ययन।-एम.: शिक्षा, 1997।

5. उच्च शिक्षण संस्थानों के आवेदकों के लिए गणित में समस्याओं का संग्रह (एम.आई. स्कैनवी द्वारा संपादित - एम.: हायर स्कूल, 1992)।

6. मर्ज़लियाक ए.जी., पोलोनस्की वी.बी., याकिर एम.एस. बीजगणितीय सिम्युलेटर.-के.: ए.एस.के., 1997।

7. ज़वाविच एल.आई., श्ल्यापोचनिक एल.वाई.ए., चिंकिना बीजगणित और विश्लेषण की शुरुआत। 8-11 ग्रेड: गणित के गहन अध्ययन के साथ स्कूलों और कक्षाओं के लिए एक मैनुअल (उपदेशात्मक सामग्री - एम.: बस्टर्ड, 2002)।

8. सहक्यान एस.एम., गोल्डमैन ए.एम., डेनिसोव डी.वी. बीजगणित पर समस्याएं और विश्लेषण के सिद्धांत (सामान्य शिक्षा संस्थानों के ग्रेड 10-11 के छात्रों के लिए एक मैनुअल)।

9. कार्प ए.पी. बीजगणित और विश्लेषण के सिद्धांतों पर समस्याओं का संग्रह: पाठ्यपुस्तक। 10-11 ग्रेड के लिए भत्ता. गहराई के साथ अध्ययन गणित.-एम.: शिक्षा, 2006।

10. ग्लेज़र जी.आई. स्कूल में गणित का इतिहास. ग्रेड 9-10 (शिक्षकों के लिए मैनुअल)।-एम.: शिक्षा, 1983

अतिरिक्त वेब संसाधन

2. प्राकृतिक विज्ञान का पोर्टल ()।

इसे घर पर बनायें

संख्या 42.2, 42.3 (बीजगणित और विश्लेषण की शुरुआत, ग्रेड 10 (दो भागों में)। सामान्य शिक्षा संस्थानों के लिए समस्या पुस्तक (प्रोफ़ाइल स्तर) ए.जी. मोर्दकोविच द्वारा संपादित। - एम.: मेनेमोसिन, 2007।)

यदि आप परिभाषा का पालन करते हैं, तो किसी बिंदु पर किसी फ़ंक्शन का व्युत्पन्न फ़ंक्शन की वृद्धि के अनुपात की सीमा है Δ तर्क वृद्धि के लिए Δ एक्स:

सब कुछ साफ नजर आ रहा है. लेकिन फ़ंक्शन के व्युत्पन्न की गणना करने के लिए इस सूत्र का उपयोग करने का प्रयास करें एफ(एक्स) = एक्स 2 + (2एक्स+3) · एक्सपाप एक्स. यदि आप सब कुछ परिभाषा के अनुसार करते हैं, तो गणना के कुछ पृष्ठों के बाद आप बस सो जाएंगे। इसलिए, सरल और अधिक प्रभावी तरीके हैं।

आरंभ करने के लिए, हम ध्यान दें कि कार्यों की संपूर्ण विविधता से हम तथाकथित प्राथमिक कार्यों को अलग कर सकते हैं। ये अपेक्षाकृत सरल अभिव्यक्तियाँ हैं, जिनके व्युत्पन्नों की गणना और सारणीबद्धता लंबे समय से की गई है। ऐसे कार्यों को याद रखना काफी आसान है - उनके डेरिवेटिव के साथ।

प्राथमिक कार्यों के व्युत्पन्न

प्राथमिक कार्य नीचे सूचीबद्ध सभी हैं। इन कार्यों के व्युत्पन्न को हृदय से जानना चाहिए। इसके अलावा, उन्हें याद रखना बिल्कुल भी मुश्किल नहीं है - यही कारण है कि वे प्राथमिक हैं।

तो, प्राथमिक कार्यों के व्युत्पन्न:

नाम समारोह यौगिक
स्थिर एफ(एक्स) = सी, सीआर 0 (हाँ, शून्य!)
तर्कसंगत प्रतिपादक के साथ शक्ति एफ(एक्स) = एक्स एन एन · एक्स एन − 1
साइनस एफ(एक्स) = पाप एक्स ओल एक्स
कोज्या एफ(एक्स) = क्योंकि एक्स −पाप एक्स(शून्य से साइन)
स्पर्शरेखा एफ(एक्स) = टीजी एक्स 1/cos 2 एक्स
कोटैंजेंट एफ(एक्स) = सीटीजी एक्स − 1/पाप 2 एक्स
प्राकृतिक एफ(एक्स) = लॉग एक्स 1/एक्स
मनमाना लघुगणक एफ(एक्स) = लॉग एक्स 1/(एक्सएल.एन )
घातांक प्रकार्य एफ(एक्स) = एक्स एक्स(कुछ भी नहीं बदला)

यदि किसी प्राथमिक फ़ंक्शन को एक मनमाना स्थिरांक से गुणा किया जाता है, तो नए फ़ंक्शन के व्युत्पन्न की गणना भी आसानी से की जाती है:

(सी · एफ)’ = सी · एफ ’.

सामान्य तौर पर, स्थिरांक को व्युत्पन्न के चिह्न से बाहर निकाला जा सकता है। उदाहरण के लिए:

(2एक्स 3)' = 2 · ( एक्स 3)' = 2 3 एक्स 2 = 6एक्स 2 .

जाहिर है, प्राथमिक कार्यों को एक-दूसरे से जोड़ा जा सकता है, गुणा किया जा सकता है, विभाजित किया जा सकता है - और भी बहुत कुछ। इस प्रकार नए कार्य प्रकट होंगे, जो अब विशेष रूप से प्राथमिक नहीं होंगे, बल्कि कुछ नियमों के अनुसार विभेदित भी होंगे। इन नियमों पर नीचे चर्चा की गई है।

योग और अंतर का व्युत्पन्न

फ़ंक्शंस दिए जाएं एफ(एक्स) और जी(एक्स), जिसके व्युत्पन्न हमें ज्ञात हैं। उदाहरण के लिए, आप ऊपर चर्चा किए गए प्राथमिक कार्यों को ले सकते हैं। फिर आप इन कार्यों के योग और अंतर का व्युत्पन्न पा सकते हैं:

  1. (एफ + जी)’ = एफ ’ + जी
  2. (एफजी)’ = एफ ’ − जी

तो, दो कार्यों के योग (अंतर) का व्युत्पन्न, व्युत्पन्नों के योग (अंतर) के बराबर है। और भी शर्तें हो सकती हैं. उदाहरण के लिए, ( एफ + जी + एच)’ = एफ ’ + जी ’ + एच ’.

कड़ाई से कहें तो, बीजगणित में "घटाव" की कोई अवधारणा नहीं है। "नकारात्मक तत्व" की एक अवधारणा है। इसलिए अंतर है एफजीयोग के रूप में पुनः लिखा जा सकता है एफ+ (−1) जी, और तब केवल एक सूत्र बचता है - योग का व्युत्पन्न।

एफ(एक्स) = एक्स 2 + पाप एक्स; जी(एक्स) = एक्स 4 + 2एक्स 2 − 3.

समारोह एफ(एक्स) दो प्राथमिक कार्यों का योग है, इसलिए:

एफ ’(एक्स) = (एक्स 2 + पाप एक्स)’ = (एक्स 2)' + (पाप) एक्स)’ = 2एक्स+ क्योंकि x;

हम फ़ंक्शन के लिए इसी तरह तर्क करते हैं जी(एक्स). केवल पहले से ही तीन पद हैं (बीजगणित के दृष्टिकोण से):

जी ’(एक्स) = (एक्स 4 + 2एक्स 2 − 3)’ = (एक्स 4 + 2एक्स 2 + (−3))’ = (एक्स 4)’ + (2एक्स 2)’ + (−3)’ = 4एक्स 3 + 4एक्स + 0 = 4एक्स · ( एक्स 2 + 1).

उत्तर:
एफ ’(एक्स) = 2एक्स+ क्योंकि x;
जी ’(एक्स) = 4एक्स · ( एक्स 2 + 1).

उत्पाद का व्युत्पन्न

गणित एक तार्किक विज्ञान है, इसलिए बहुत से लोग मानते हैं कि यदि किसी योग का व्युत्पन्न, व्युत्पन्नों के योग के बराबर है, तो उत्पाद का व्युत्पन्न हड़ताल">डेरिवेटिव के उत्पाद के बराबर। लेकिन भाड़ में जाओ! किसी उत्पाद के व्युत्पन्न की गणना पूरी तरह से अलग सूत्र का उपयोग करके की जाती है। अर्थात्:

(एफ · जी) ’ = एफ ’ · जी + एफ · जी

सूत्र सरल है, लेकिन इसे अक्सर भुला दिया जाता है। और न केवल स्कूली बच्चे, बल्कि छात्र भी। परिणाम गलत तरीके से हल की गई समस्याएं हैं।

काम। कार्यों के व्युत्पन्न खोजें: एफ(एक्स) = एक्स 3 क्योंकि x; जी(एक्स) = (एक्स 2 + 7एक्स− 7) · एक्स .

समारोह एफ(एक्स) दो प्राथमिक कार्यों का उत्पाद है, इसलिए सब कुछ सरल है:

एफ ’(एक्स) = (एक्स 3 कोस एक्स)’ = (एक्स 3)' क्योंकि एक्स + एक्स 3 (कोस एक्स)’ = 3एक्स 2 कोस एक्स + एक्स 3 (- पाप एक्स) = एक्स 2 (3cos एक्सएक्सपाप एक्स)

समारोह जी(एक्स) पहला गुणक थोड़ा अधिक जटिल है, लेकिन सामान्य योजना नहीं बदलती है। जाहिर है, फ़ंक्शन का पहला कारक जी(एक्स) एक बहुपद है और इसका व्युत्पन्न योग का व्युत्पन्न है। हमारे पास है:

जी ’(एक्स) = ((एक्स 2 + 7एक्स− 7) · एक्स)’ = (एक्स 2 + 7एक्स− 7)' · एक्स + (एक्स 2 + 7एक्स− 7) ( एक्स)’ = (2एक्स+7) · एक्स + (एक्स 2 + 7एक्स− 7) · एक्स = एक्स· (2 एक्स + 7 + एक्स 2 + 7एक्स −7) = (एक्स 2 + 9एक्स) · एक्स = एक्स(एक्स+9) · एक्स .

उत्तर:
एफ ’(एक्स) = एक्स 2 (3cos एक्सएक्सपाप एक्स);
जी ’(एक्स) = एक्स(एक्स+9) · एक्स .

कृपया ध्यान दें कि अंतिम चरण में व्युत्पन्न का गुणनखंडन किया जाता है। औपचारिक रूप से, ऐसा करने की आवश्यकता नहीं है, लेकिन अधिकांश डेरिवेटिव की गणना स्वयं नहीं की जाती है, बल्कि फ़ंक्शन की जांच करने के लिए की जाती है। इसका मतलब यह है कि आगे व्युत्पन्न को शून्य के बराबर किया जाएगा, इसके संकेत निर्धारित किए जाएंगे, इत्यादि। ऐसे मामले के लिए, अभिव्यक्ति को गुणनखंडित करना बेहतर है।

यदि दो कार्य हैं एफ(एक्स) और जी(एक्स), और जी(एक्स) ≠ 0 जिस सेट में हमारी रुचि है, हम एक नया फ़ंक्शन परिभाषित कर सकते हैं एच(एक्स) = एफ(एक्स)/जी(एक्स). ऐसे फ़ंक्शन के लिए आप व्युत्पन्न भी पा सकते हैं:

कमज़ोर नहीं, हुह? माइनस कहां से आया? क्यों जी 2? और इस तरह! यह सबसे जटिल फ़ार्मुलों में से एक है - आप इसे बोतल के बिना नहीं समझ सकते। इसलिए, विशिष्ट उदाहरणों के साथ इसका अध्ययन करना बेहतर है।

काम। कार्यों के व्युत्पन्न खोजें:

प्रत्येक भिन्न के अंश और हर में प्रारंभिक कार्य होते हैं, इसलिए हमें भागफल के व्युत्पन्न के लिए केवल सूत्र की आवश्यकता होती है:


परंपरा के अनुसार, आइए अंश का गुणनखंड करें - इससे उत्तर बहुत सरल हो जाएगा:

एक जटिल फ़ंक्शन आवश्यक रूप से आधा किलोमीटर लंबा सूत्र नहीं है। उदाहरण के लिए, यह फ़ंक्शन लेने के लिए पर्याप्त है एफ(एक्स) = पाप एक्सऔर वेरिएबल को बदलें एक्स, कहो, पर एक्स 2 + एल.एन एक्स. हो जाएगा एफ(एक्स) = पाप ( एक्स 2 + एल.एन एक्स) - यह एक जटिल कार्य है। इसका एक व्युत्पन्न भी है, लेकिन ऊपर चर्चा किए गए नियमों का उपयोग करके इसे ढूंढना संभव नहीं होगा।

मुझे क्या करना चाहिए? ऐसे मामलों में, किसी जटिल फ़ंक्शन के व्युत्पन्न के लिए एक चर और सूत्र को बदलने से मदद मिलती है:

एफ ’(एक्स) = एफ ’(टी) · टी', अगर एक्सद्वारा प्रतिस्थापित किया जाता है टी(एक्स).

एक नियम के रूप में, इस सूत्र को समझने की स्थिति भागफल के व्युत्पन्न से भी अधिक दुखद है। इसलिए, प्रत्येक चरण के विस्तृत विवरण के साथ, विशिष्ट उदाहरणों का उपयोग करके इसे समझाना भी बेहतर है।

काम। कार्यों के व्युत्पन्न खोजें: एफ(एक्स) = 2एक्स + 3 ; जी(एक्स) = पाप ( एक्स 2 + एल.एन एक्स)

ध्यान दें कि यदि फ़ंक्शन में एफ(एक्स) अभिव्यक्ति 2 के स्थान पर एक्स+3 आसान होगा एक्स, तो हमें एक प्राथमिक कार्य मिलता है एफ(एक्स) = एक्स. इसलिए, हम एक प्रतिस्थापन करते हैं: चलो 2 एक्स + 3 = टी, एफ(एक्स) = एफ(टी) = टी. हम सूत्र का उपयोग करके एक जटिल फ़ंक्शन के व्युत्पन्न की तलाश करते हैं:

एफ ’(एक्स) = एफ ’(टी) · टी ’ = ( टी)’ · टी ’ = टी · टी

और अब - ध्यान! हम उलटा प्रतिस्थापन करते हैं: टी = 2एक्स+3. हमें मिलता है:

एफ ’(एक्स) = टी · टी ’ = 2एक्स+3(2 एक्स + 3)’ = 2एक्स+ 3 2 = 2 2एक्स + 3

अब आइए फ़ंक्शन पर नजर डालें जी(एक्स). जाहिर है इसे बदलने की जरूरत है एक्स 2 + एल.एन एक्स = टी. हमारे पास है:

जी ’(एक्स) = जी ’(टी) · टी'= (पाप टी)’ · टी' = क्योंकि टी · टी

उलटा प्रतिस्थापन: टी = एक्स 2 + एल.एन एक्स. तब:

जी ’(एक्स) = क्योंकि ( एक्स 2 + एल.एन एक्स) · ( एक्स 2 + एल.एन एक्स)' = क्योंकि ( एक्स 2 + एल.एन एक्स) · (2 एक्स + 1/एक्स).

बस इतना ही! जैसा कि अंतिम अभिव्यक्ति से देखा जा सकता है, पूरी समस्या व्युत्पन्न योग की गणना करने के लिए कम हो गई है।

उत्तर:
एफ ’(एक्स) = 2 · 2एक्स + 3 ;
जी ’(एक्स) = (2एक्स + 1/एक्स) क्योंकि ( एक्स 2 + एल.एन एक्स).

मैं अक्सर अपने पाठों में "व्युत्पन्न" शब्द के बजाय "प्राइम" शब्द का उपयोग करता हूँ। उदाहरण के लिए, योग का स्ट्रोक स्ट्रोक के योग के बराबर होता है। क्या यह अधिक स्पष्ट है? अच्छा, यह तो अच्छी बात है।

इस प्रकार, ऊपर चर्चा किए गए नियमों के अनुसार व्युत्पन्न की गणना इन्हीं स्ट्रोक से छुटकारा पाने के लिए आती है। अंतिम उदाहरण के रूप में, आइए एक तर्कसंगत घातांक के साथ व्युत्पन्न शक्ति पर वापस लौटें:

(एक्स एन)’ = एन · एक्स एन − 1

इस भूमिका के बारे में कम ही लोग जानते हैं एनयह एक भिन्नात्मक संख्या भी हो सकती है। उदाहरण के लिए, जड़ है एक्स 0.5. अगर जड़ के नीचे कुछ फैंसी हो तो क्या होगा? फिर, परिणाम एक जटिल कार्य होगा - वे परीक्षणों और परीक्षाओं में ऐसे निर्माण देना पसंद करते हैं।

काम। फ़ंक्शन का व्युत्पन्न खोजें:

सबसे पहले, आइए मूल को एक तर्कसंगत घातांक के साथ एक घात के रूप में फिर से लिखें:

एफ(एक्स) = (एक्स 2 + 8एक्स − 7) 0,5 .

अब हम एक प्रतिस्थापन करते हैं: चलो एक्स 2 + 8एक्स − 7 = टी. हम सूत्र का उपयोग करके व्युत्पन्न पाते हैं:

एफ ’(एक्स) = एफ ’(टी) · टी ’ = (टी 0.5)' · टी' = 0.5 · टी−0.5 · टी ’.

आइए उलटा प्रतिस्थापन करें: टी = एक्स 2 + 8एक्स− 7. हमारे पास है:

एफ ’(एक्स) = 0.5 · ( एक्स 2 + 8एक्स− 7) −0.5 · ( एक्स 2 + 8एक्स− 7)' = 0.5 (2 एक्स+8)( एक्स 2 + 8एक्स − 7) −0,5 .

अंत में, जड़ों की ओर वापस जाएँ: