Derivata unei functii complexe este egala cu. Derivată a unei funcții complexe. Derivată a unei funcții putere-exponențială

Rezolvarea problemelor fizice sau a exemplelor de matematică este complet imposibilă fără cunoașterea derivatei și a metodelor de calcul. Derivata este unul dintre cele mai importante concepte în analiza matematică. Am decis să dedicăm articolul de astăzi acestui subiect fundamental. Ce este o derivată, care este semnificația sa fizică și geometrică, cum se calculează derivata unei funcții? Toate aceste întrebări pot fi combinate într-una singură: cum să înțelegeți derivatul?

Sensul geometric și fizic al derivatului

Să existe o funcție f(x) , specificat într-un anumit interval (a, b) . Punctele x și x0 aparțin acestui interval. Când x se schimbă, funcția în sine se schimbă. Schimbarea argumentului - diferența de valori x-x0 . Această diferență este scrisă ca delta x și se numește increment de argument. O modificare sau o creștere a unei funcții este diferența dintre valorile unei funcții în două puncte. Definiția derivatului:

Derivata unei funcții într-un punct este limita raportului dintre incrementul funcției la un punct dat și incrementul argumentului atunci când acesta din urmă tinde spre zero.

Altfel se poate scrie asa:

Ce rost are să găsești o astfel de limită? Și iată ce este:

derivata unei funcții într-un punct este egală cu tangentei unghiului dintre axa OX și tangentei la graficul funcției într-un punct dat.


Sensul fizic al derivatului: derivata traseului în raport cu timpul este egală cu viteza mișcării rectilinie.

Într-adevăr, încă din timpul școlii, toată lumea știe că viteza este o cale anume x=f(t) si timpul t . Viteza medie pe o anumită perioadă de timp:

Pentru a afla viteza de mișcare la un moment dat t0 trebuie să calculați limita:

Prima regulă: setați o constantă

Constanta poate fi scoasă din semnul derivatului. Mai mult, acest lucru trebuie făcut. Când rezolvați exemple la matematică, luați-o ca regulă - Dacă puteți simplifica o expresie, asigurați-vă că o simplificați .

Exemplu. Să calculăm derivata:

Regula a doua: derivata sumei functiilor

Derivata sumei a doua functii este egala cu suma derivatelor acestor functii. Același lucru este valabil și pentru derivata diferenței de funcții.

Nu vom oferi o dovadă a acestei teoreme, ci mai degrabă luăm în considerare un exemplu practic.

Aflați derivata funcției:

Regula trei: derivata produsului de funcții

Derivata produsului a doua functii diferentiabile se calculeaza prin formula:

Exemplu: găsiți derivata unei funcții:

Soluţie:

Este important să vorbim aici despre calcularea derivatelor funcțiilor complexe. Derivata unei functii complexe este egala cu produsul derivatei acestei functii fata de argumentul intermediar si derivata argumentului intermediar fata de variabila independenta.

În exemplul de mai sus întâlnim expresia:

În acest caz, argumentul intermediar este de 8x față de a cincea putere. Pentru a calcula derivata unei astfel de expresii, mai întâi calculăm derivata funcției externe în raport cu argumentul intermediar și apoi înmulțim cu derivata argumentului intermediar în sine față de variabila independentă.

Regula a patra: derivată a câtului a două funcții

Formula pentru determinarea derivatei coeficientului a două funcții:

Am încercat să vorbim despre derivate pentru manechine de la zero. Acest subiect nu este atât de simplu pe cât pare, așa că fiți atenți: există adesea capcane în exemple, așa că aveți grijă când calculați derivatele.

Cu orice întrebări pe acest subiect și pe alte subiecte, puteți contacta serviciul studenți. În scurt timp, vă vom ajuta să rezolvați cel mai dificil test și să înțelegeți sarcinile, chiar dacă nu ați mai făcut niciodată calcule derivate.

Foarte ușor de reținut.

Ei bine, să nu mergem departe, să luăm imediat în considerare funcția inversă. Care funcție este inversul funcției exponențiale? Logaritm:

În cazul nostru, baza este numărul:

Un astfel de logaritm (adică un logaritm cu bază) se numește „natural” și folosim o notație specială pentru el: scriem în schimb.

Cu ce ​​este egal? Desigur, .

Derivata logaritmului natural este, de asemenea, foarte simplă:

Exemple:

  1. Aflați derivata funcției.
  2. Care este derivata functiei?

Raspunsuri: Logaritmul exponențial și natural sunt funcții unice simple dintr-o perspectivă derivată. Funcțiile exponențiale și logaritmice cu orice altă bază vor avea o derivată diferită, pe care o vom analiza mai târziu, după ce vom parcurge regulile de diferențiere.

Reguli de diferențiere

Reguli de ce? Din nou un nou termen, din nou?!...

Diferenţiere este procesul de găsire a derivatei.

Asta e tot. Ce altceva poți numi acest proces într-un singur cuvânt? Nu derivată... Matematicienii numesc diferenţialul acelaşi increment al unei funcţii la. Acest termen provine din latinescul differentia - diferență. Aici.

Când derivăm toate aceste reguli, vom folosi două funcții, de exemplu, și. De asemenea, vom avea nevoie de formule pentru incrementele lor:

Sunt 5 reguli în total.

Constanta este scoasă din semnul derivatului.

Dacă - un număr constant (constant), atunci.

Evident, această regulă funcționează și pentru diferența: .

Să demonstrăm. Să fie, sau mai simplu.

Exemple.

Aflați derivatele funcțiilor:

  1. la un punct;
  2. la un punct;
  3. la un punct;
  4. la punct.

Solutii:

  1. (derivata este aceeași în toate punctele, deoarece este o funcție liniară, vă amintiți?);

Derivat al produsului

Totul este similar aici: să introducem o nouă funcție și să găsim incrementul acesteia:

Derivat:

Exemple:

  1. Aflați derivatele funcțiilor și;
  2. Aflați derivata funcției într-un punct.

Solutii:

Derivată a unei funcții exponențiale

Acum cunoștințele tale sunt suficiente pentru a învăța cum să găsești derivata oricărei funcții exponențiale și nu doar exponenți (ai uitat încă ce este asta?).

Deci, unde este un număr.

Știm deja derivata funcției, așa că să încercăm să ne reducem funcția la o nouă bază:

Pentru a face acest lucru, vom folosi o regulă simplă: . Apoi:

Ei bine, a funcționat. Acum încercați să găsiți derivata și nu uitați că această funcție este complexă.

S-a întâmplat?

Iată, verifică-te:

Formula s-a dovedit a fi foarte asemănătoare cu derivata unui exponent: așa cum a fost, rămâne aceeași, a apărut doar un factor, care este doar un număr, dar nu o variabilă.

Exemple:
Aflați derivatele funcțiilor:

Raspunsuri:

Acesta este doar un număr care nu poate fi calculat fără un calculator, adică nu poate fi scris într-o formă mai simplă. Prin urmare, îl lăsăm în această formă în răspuns.

    Rețineți că aici este câtul a două funcții, așa că aplicăm regula de diferențiere corespunzătoare:

    În acest exemplu, produsul a două funcții:

Derivată a unei funcții logaritmice

Este similar și aici: știți deja derivata logaritmului natural:

Prin urmare, pentru a găsi un logaritm arbitrar cu o bază diferită, de exemplu:

Trebuie să reducem acest logaritm la bază. Cum schimbi baza unui logaritm? Sper să vă amintiți această formulă:

Abia acum vom scrie în schimb:

Numitorul este pur și simplu o constantă (un număr constant, fără o variabilă). Derivata se obține foarte simplu:

Derivate ale funcțiilor exponențiale și logaritmice nu se găsesc aproape niciodată în examenul de stat unificat, dar nu va fi de prisos să le cunoaștem.

Derivată a unei funcții complexe.

Ce este o „funcție complexă”? Nu, acesta nu este un logaritm și nu o arctangentă. Aceste funcții pot fi greu de înțeles (deși dacă ți se pare dificil logaritmul, citește subiectul „Logaritmi” și vei fi bine), dar din punct de vedere matematic, cuvântul „complex” nu înseamnă „dificil”.

Imaginați-vă o bandă rulantă mică: două persoane stau și fac niște acțiuni cu unele obiecte. De exemplu, primul învelește un baton de ciocolată într-un ambalaj, iar al doilea îl leagă cu o panglică. Rezultatul este un obiect compozit: un baton de ciocolată înfășurat și legat cu o panglică. Pentru a mânca un baton de ciocolată, trebuie să faceți pașii inversi în ordine inversă.

Să creăm o conductă matematică similară: mai întâi vom găsi cosinusul unui număr, apoi vom pătrat numărul rezultat. Așadar, ni se dă un număr (ciocolată), îi găsesc cosinus (înveliș), iar apoi pătrați ceea ce am primit (legați-l cu o panglică). Ce s-a întâmplat? Funcţie. Acesta este un exemplu de funcție complexă: când, pentru a-i găsi valoarea, executăm prima acțiune direct cu variabila, iar apoi o a doua acțiune cu ceea ce a rezultat din prima.

Cu alte cuvinte, o funcție complexă este o funcție al cărei argument este o altă funcție: .

Pentru exemplul nostru, .

Putem face cu ușurință aceiași pași în ordine inversă: mai întâi îl pătrați, iar apoi caut cosinusul numărului rezultat: . Este ușor de ghicit că rezultatul va fi aproape întotdeauna diferit. O caracteristică importantă a funcțiilor complexe: atunci când ordinea acțiunilor se schimbă, funcția se schimbă.

Al doilea exemplu: (același lucru). .

Acțiunea pe care o facem ultima va fi numită funcția „externă”., iar acțiunea efectuată prima - în consecință funcția „internă”.(acestea sunt nume informale, le folosesc doar pentru a explica materialul într-un limbaj simplu).

Încercați să determinați singur ce funcție este externă și care este internă:

Raspunsuri: Separarea funcțiilor interioare și exterioare este foarte asemănătoare cu schimbarea variabilelor: de exemplu, într-o funcție

  1. Ce acțiune vom efectua mai întâi? Mai întâi, să calculăm sinusul și abia apoi să-l cubăm. Aceasta înseamnă că este o funcție internă, dar una externă.
    Iar funcția inițială este compoziția lor: .
  2. Intern: ; extern: .
    Examinare: .
  3. Intern: ; extern: .
    Examinare: .
  4. Intern: ; extern: .
    Examinare: .
  5. Intern: ; extern: .
    Examinare: .

Schimbăm variabilele și obținem o funcție.

Ei bine, acum ne vom extrage batonul de ciocolată și vom căuta derivatul. Procedura este întotdeauna inversată: mai întâi căutăm derivata funcției exterioare, apoi înmulțim rezultatul cu derivata funcției interioare. În raport cu exemplul original, arată astfel:

Alt exemplu:

Deci, să formulăm în sfârșit regula oficială:

Algoritm pentru găsirea derivatei unei funcții complexe:

Pare simplu, nu?

Să verificăm cu exemple:

Solutii:

1) Intern: ;

Extern: ;

2) Intern: ;

(Nu încercați să o tăiați până acum! Nu iese nimic de sub cosinus, vă amintiți?)

3) Intern: ;

Extern: ;

Este imediat clar că aceasta este o funcție complexă pe trei niveluri: la urma urmei, aceasta este deja o funcție complexă în sine și, de asemenea, extragem rădăcina din ea, adică efectuăm a treia acțiune (punem ciocolata într-un ambalaj iar cu o panglică în servietă). Dar nu există niciun motiv să ne fie frică: vom „despacheta” această funcție în aceeași ordine ca de obicei: de la sfârșit.

Adică mai întâi diferențiem rădăcina, apoi cosinusul și abia apoi expresia dintre paranteze. Și apoi înmulțim totul.

În astfel de cazuri, este convenabil să numerotați acțiunile. Adică să ne imaginăm ce știm. În ce ordine vom efectua acțiuni pentru a calcula valoarea acestei expresii? Să ne uităm la un exemplu:

Cu cât acțiunea este efectuată mai târziu, cu atât funcția corespunzătoare va fi mai „externă”. Secvența acțiunilor este aceeași ca înainte:

Aici cuibărirea este în general pe 4 niveluri. Să stabilim cursul acțiunii.

1. Exprimarea radicală. .

2. Rădăcină. .

3. Sine. .

4. Pătrat. .

5. Punând totul împreună:

DERIVAT. SCURT DESPRE LUCRURILE PRINCIPALE

Derivată a unei funcții- raportul dintre incrementul funcției și incrementul argumentului pentru o creștere infinitezimală a argumentului:

Derivate de bază:

Reguli de diferentiere:

Constanta este scoasă din semnul derivat:

Derivată a sumei:

Derivat al produsului:

Derivată a coeficientului:

Derivata unei functii complexe:

Algoritm pentru găsirea derivatei unei funcții complexe:

  1. Definim funcția „internă” și găsim derivata ei.
  2. Definim funcția „externă” și găsim derivata ei.
  3. Înmulțim rezultatele primului și celui de-al doilea punct.

Sunt date exemple de calculare a derivatelor folosind formula pentru derivata unei funcții complexe.

Conţinut

Vezi si: Dovada formulei pentru derivata unei funcții complexe

Formule de bază

Aici oferim exemple de calculare a derivatelor următoarelor funcții:
; ; ; ; .

Dacă o funcție poate fi reprezentată ca o funcție complexă în următoarea formă:
,
atunci derivata sa este determinată de formula:
.
În exemplele de mai jos, vom scrie această formulă după cum urmează:
.
Unde .
Aici, indicele sau , situate sub semnul derivatei, denotă variabilele prin care se realizează diferențierea.

De obicei, în tabelele de derivate, sunt date derivate ale funcțiilor din variabila x. Cu toate acestea, x este un parametru formal. Variabila x poate fi înlocuită cu orice altă variabilă. Prin urmare, la diferențierea unei funcții de o variabilă, pur și simplu schimbăm, în tabelul derivatelor, variabila x în variabila u.

Exemple simple

Exemplul 1

Aflați derivata unei funcții complexe
.

Să scriem funcția dată în formă echivalentă:
.
În tabelul derivatelor găsim:
;
.

Conform formulei pentru derivata unei funcții complexe, avem:
.
Aici .

Exemplul 2

Găsiți derivata
.

Luăm constanta 5 din semnul derivatei și din tabelul derivatelor găsim:
.


.
Aici .

Exemplul 3

Găsiți derivata
.

Scoatem o constantă -1 pentru semnul derivatei și din tabelul derivatelor găsim:
;
Din tabelul derivatelor găsim:
.

Aplicam formula pentru derivata unei functii complexe:
.
Aici .

Exemple mai complexe

În exemple mai complexe, aplicăm de mai multe ori regula de diferențiere a unei funcții complexe. În acest caz, calculăm derivata de la final. Adică, împărțim funcția în părțile sale componente și găsim derivatele celor mai simple părți folosind tabelul derivatelor. De asemenea, folosim reguli de diferențiere a sumelor, produse și fracții. Apoi facem substituții și aplicăm formula pentru derivata unei funcții complexe.

Exemplul 4

Găsiți derivata
.

Să selectăm cea mai simplă parte a formulei și să găsim derivata acesteia. .



.
Aici am folosit notația
.

Găsim derivata următoarei părți a funcției originale folosind rezultatele obținute. Aplicam regula de diferentiere a sumei:
.

Încă o dată aplicăm regula diferențierii funcțiilor complexe.

.
Aici .

Exemplul 5

Aflați derivata funcției
.

Să selectăm cea mai simplă parte a formulei și să găsim derivata acesteia din tabelul cu derivate. .

Aplicam regula de diferentiere a functiilor complexe.
.
Aici
.

Să diferențiem următoarea parte folosind rezultatele obținute.
.
Aici
.

Să diferențiem următoarea parte.

.
Aici
.

Acum găsim derivata funcției dorite.

.
Aici
.

Vezi si:

Această lecție este dedicată subiectului „Diferențierea funcțiilor complexe. O problemă din practica pregătirii pentru examenul de stat unificat la matematică.” Această lecție explorează diferențierea funcțiilor complexe. Se întocmește un tabel cu derivatele unei funcții complexe. În plus, este luat în considerare un exemplu de rezolvare a unei probleme din practica pregătirii pentru examenul unificat de stat la matematică.

Subiect: derivat

Lecție: Diferențierea unei funcții complexe. O sarcină practică pentru pregătirea pentru examenul de stat unificat la matematică

Complexfuncţie am diferențiat deja, dar argumentul a fost o funcție liniară, și anume, știm să diferențiem funcția . De exemplu, . Acum, în același mod, vom găsi derivate ale unei funcții complexe, unde în loc de o funcție liniară poate exista o altă funcție.

Să începem cu funcția

Deci, am găsit derivata sinusului dintr-o funcție complexă, unde argumentul sinusului a fost o funcție pătratică.

Dacă trebuie să găsiți valoarea derivatei într-un anumit punct, atunci acest punct trebuie înlocuit cu derivata găsită.

Deci, în două exemple am văzut cum funcționează regula diferenţiere complex funcții.

2.

3. . Să vă reamintim că.

7.

8. .

Astfel, vom termina tabelul de diferențiere a funcțiilor complexe în această etapă. În plus, desigur, va fi generalizat și mai mult, dar acum să trecem la problemele specifice ale derivatei.

În practica pregătirii pentru examenul unificat de stat, sunt propuse următoarele sarcini.

Găsiți minimul unei funcții .

ODZ: .

Să găsim derivata. Să ne amintim că, .

Să echivalăm derivata cu zero. Punctul este inclus în ODZ.

Să găsim intervalele de semn constant ale derivatei (intervale de monotonitate a funcției) (vezi Fig. 1).

Orez. 1. Intervale de monotonitate pentru o funcție .

Să ne uităm la un punct și să aflăm dacă este un punct extremum. Un semn suficient al unui extremum este că derivata își schimbă semnul când trece printr-un punct. În acest caz, derivata își schimbă semnul, ceea ce înseamnă că este un punct extremum. Deoarece derivata își schimbă semnul de la „-” la „+”, atunci acesta este punctul minim. Să găsim valoarea funcției în punctul minim: . Să desenăm o diagramă (vezi Fig. 2).

Fig.2. Extremul funcției .

Pe interval - funcția scade, pe - funcția crește, punctul extremum este unic. Funcția ia cea mai mică valoare numai în punctul .

În timpul lecției, ne-am uitat la diferențierea funcțiilor complexe, am compilat un tabel și ne-am uitat la regulile de diferențiere a unei funcții complexe și am dat un exemplu de utilizare a unei derivate din practica pregătirii pentru examenul de stat unificat.

1. Algebră și început de analiză, nota 10 (în două părți). Manual pentru instituțiile de învățământ general (nivel de profil), ed. A. G. Mordkovici. -M.: Mnemosyne, 2009.

2. Algebră și început de analiză, nota 10 (în două părți). Cartea de probleme pentru instituțiile de învățământ (nivel de profil), ed. A. G. Mordkovici. -M.: Mnemosyne, 2007.

3. Vilenkin N.Ya., Ivashev-Musatov O.S., Shvartsburd S.I. Algebră și analiză matematică pentru clasa a 10-a (manual pentru elevii școlilor și claselor cu studiu aprofundat al matematicii). - M.: Prosveshchenie, 1996.

4. Galitsky M.L., Moshkovich M.M., Shvartburd S.I. Studiu aprofundat al algebrei și analizei matematice.-M.: Educație, 1997.

5. Culegere de probleme de matematică pentru solicitanții la instituțiile de învățământ superior (editat de M.I. Skanavi).- M.: Liceu, 1992.

6. Merzlyak A.G., Polonsky V.B., Yakir M.S. Simulator algebric.-K.: A.S.K., 1997.

7. Zvavich L.I., Shlyapochnik L.Ya., Chinkina Algebra și începuturile analizei. Clasele 8-11: Un manual pentru școli și clase cu studiu aprofundat al matematicii (materiale didactice) - M.: Gutarda, 2002.

8. Sahakyan S.M., Goldman A.M., Denisov D.V. Probleme de algebră și principii de analiză (manual pentru elevii din clasele 10-11 din instituțiile de învățământ general) - M.: Prosveshchenie, 2003.

9. Karp A.P. Culegere de probleme de algebră și principii de analiză: manual. indemnizatie pentru 10-11 clase. cu profunzime studiat Matematică.-M.: Educaţie, 2006.

10. Glazer G.I. Istoria matematicii la scoala. Clasele 9-10 (manual pentru profesori).-M.: Educaţie, 1983

Resurse web suplimentare

2. Portalul Științelor Naturii ().

Fă-o acasă

Nr. 42.2, 42.3 (Algebră și începuturi de analiză, nota 10 (în două părți). Cartea de probleme pentru instituțiile de învățământ general (nivel de profil) editată de A. G. Mordkovich. - M.: Mnemosyne, 2007.)

Dacă urmați definiția, atunci derivata unei funcții într-un punct este limita raportului de creștere a funcției Δ y la argumentul increment Δ X:

Totul pare a fi clar. Dar încercați să utilizați această formulă pentru a calcula, să zicem, derivata funcției f(X) = X 2 + (2X+ 3) · e X păcat X. Dacă faci totul prin definiție, atunci după câteva pagini de calcule vei adormi pur și simplu. Prin urmare, există modalități mai simple și mai eficiente.

Pentru început, observăm că din întreaga varietate de funcții putem distinge așa-numitele funcții elementare. Acestea sunt expresii relativ simple, ale căror derivate au fost mult timp calculate și tabulate. Astfel de funcții sunt destul de ușor de reținut - împreună cu derivatele lor.

Derivate ale funcţiilor elementare

Funcțiile elementare sunt toate cele enumerate mai jos. Derivatele acestor funcții trebuie cunoscute pe de rost. În plus, nu este deloc dificil să le memorezi - de aceea sunt elementare.

Deci, derivate ale funcțiilor elementare:

Nume Funcţie Derivat
Constant f(X) = C, CR 0 (da, zero!)
Putere cu exponent rațional f(X) = X n n · X n − 1
Sinusul f(X) = păcat X cos X
Cosinus f(X) = cos X −păcat X(minus sinus)
Tangentă f(X) = tg X 1/cos 2 X
Cotangentă f(X) = ctg X − 1/sin 2 X
Logaritmul natural f(X) = jurnal X 1/X
Logaritmul arbitrar f(X) = jurnal A X 1/(X ln A)
Functie exponentiala f(X) = e X e X(Nimic nu s-a schimbat)

Dacă o funcție elementară este înmulțită cu o constantă arbitrară, atunci derivata noii funcție este de asemenea ușor de calculată:

(C · f)’ = C · f ’.

În general, constantele pot fi scoase din semnul derivatei. De exemplu:

(2X 3)’ = 2 · ( X 3)’ = 2 3 X 2 = 6X 2 .

Evident, funcțiile elementare pot fi adăugate între ele, multiplicate, împărțite - și multe altele. Așa vor apărea funcții noi, nu mai ales elementare, dar și diferențiate după anumite reguli. Aceste reguli sunt discutate mai jos.

Derivată a sumei și diferenței

Lasă funcțiile să fie date f(X) Și g(X), ale căror derivate ne sunt cunoscute. De exemplu, puteți lua funcțiile elementare discutate mai sus. Apoi puteți găsi derivata sumei și diferenței acestor funcții:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Deci, derivata sumei (diferența) a două funcții este egală cu suma (diferența) derivatelor. Pot exista mai mulți termeni. De exemplu, ( f + g + h)’ = f ’ + g ’ + h ’.

Strict vorbind, nu există un concept de „scădere” în algebră. Există un concept de „element negativ”. Prin urmare diferența fg poate fi rescris ca o sumă f+ (−1) g, iar apoi rămâne o singură formulă - derivata sumei.

f(X) = X 2 + sin x; g(X) = X 4 + 2X 2 − 3.

Funcţie f(X) este suma a două funcții elementare, prin urmare:

f ’(X) = (X 2 + păcat X)’ = (X 2)’ + (păcat X)’ = 2X+ cos x;

Raționăm în mod similar pentru funcție g(X). Numai că există deja trei termeni (din punct de vedere al algebrei):

g ’(X) = (X 4 + 2X 2 − 3)’ = (X 4 + 2X 2 + (−3))’ = (X 4)’ + (2X 2)’ + (−3)’ = 4X 3 + 4X + 0 = 4X · ( X 2 + 1).

Răspuns:
f ’(X) = 2X+ cos x;
g ’(X) = 4X · ( X 2 + 1).

Derivat al produsului

Matematica este o știință logică, așa că mulți oameni cred că, dacă derivata unei sume este egală cu suma derivatelor, atunci derivata produsului grevă„>egal cu produsul derivatelor. Dar stricați-vă! Derivata unui produs se calculează folosind o formulă complet diferită. Și anume:

(f · g) ’ = f ’ · g + f · g

Formula este simplă, dar este adesea uitată. Și nu numai școlari, ci și elevi. Rezultatul este probleme rezolvate incorect.

Sarcină. Găsiți derivate ale funcțiilor: f(X) = X 3 cos x; g(X) = (X 2 + 7X− 7) · e X .

Funcţie f(X) este produsul a două funcții elementare, deci totul este simplu:

f ’(X) = (X 3 cos X)’ = (X 3)’ cos X + X 3 (cos X)’ = 3X 2 cos X + X 3 (− păcat X) = X 2 (3cos XX păcat X)

Funcţie g(X) primul multiplicator este puțin mai complicat, dar schema generală nu se schimbă. Evident, primul factor al funcției g(X) este un polinom și derivata sa este derivata sumei. Avem:

g ’(X) = ((X 2 + 7X− 7) · e X)’ = (X 2 + 7X− 7)’ · e X + (X 2 + 7X− 7) · ( e X)’ = (2X+ 7) · e X + (X 2 + 7X− 7) · e X = e X· (2 X + 7 + X 2 + 7X −7) = (X 2 + 9X) · e X = X(X+ 9) · e X .

Răspuns:
f ’(X) = X 2 (3cos XX păcat X);
g ’(X) = X(X+ 9) · e X .

Vă rugăm să rețineți că în ultimul pas derivata este factorizată. În mod formal, acest lucru nu trebuie făcut, dar majoritatea derivatelor nu sunt calculate singure, ci pentru a examina funcția. Aceasta înseamnă că în continuare derivata va fi egalată cu zero, semnele sale vor fi determinate și așa mai departe. Pentru un astfel de caz, este mai bine să aveți o expresie factorizată.

Dacă există două funcții f(X) Și g(X), și g(X) ≠ 0 pe mulțimea care ne interesează, putem defini o nouă funcție h(X) = f(X)/g(X). Pentru o astfel de funcție puteți găsi și derivata:

Nu slab, nu? De unde a venit minusul? De ce g 2? Și așa! Aceasta este una dintre cele mai complexe formule - nu vă puteți da seama fără o sticlă. Prin urmare, este mai bine să-l studiați cu exemple specifice.

Sarcină. Găsiți derivate ale funcțiilor:

Numătorul și numitorul fiecărei fracții conțin funcții elementare, deci tot ce ne trebuie este formula pentru derivata coeficientului:


Conform tradiției, să factorizăm numărătorul - acest lucru va simplifica foarte mult răspunsul:

O funcție complexă nu este neapărat o formulă lungă de jumătate de kilometru. De exemplu, este suficient să luați funcția f(X) = păcat Xși înlocuiți variabila X, să zicem, pe X 2 + ln X. Se va rezolva f(X) = păcat ( X 2 + ln X) - aceasta este o funcție complexă. Are și un derivat, dar nu va fi posibil să îl găsiți folosind regulile discutate mai sus.

Ce ar trebuii să fac? În astfel de cazuri, înlocuirea unei variabile și a unei formule pentru derivata unei funcții complexe ajută:

f ’(X) = f ’(t) · t', Dacă X este înlocuit cu t(X).

De regulă, situația cu înțelegerea acestei formule este și mai tristă decât cu derivata coeficientului. Prin urmare, este mai bine să-l explicați folosind exemple specifice, cu o descriere detaliată a fiecărui pas.

Sarcină. Găsiți derivate ale funcțiilor: f(X) = e 2X + 3 ; g(X) = păcat ( X 2 + ln X)

Rețineți că dacă se află în funcție f(X) în loc de expresia 2 X+ 3 va fi ușor X, atunci obținem o funcție elementară f(X) = e X. Prin urmare, facem o înlocuire: fie 2 X + 3 = t, f(X) = f(t) = e t. Căutăm derivata unei funcții complexe folosind formula:

f ’(X) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

Și acum - atenție! Efectuăm înlocuirea inversă: t = 2X+ 3. Obținem:

f ’(X) = e t · t ’ = e 2X+ 3 (2 X + 3)’ = e 2X+ 3 2 = 2 e 2X + 3

Acum să ne uităm la funcția g(X). Evident că trebuie înlocuit X 2 + ln X = t. Avem:

g ’(X) = g ’(t) · t’ = (păcat t)’ · t’ = cos t · t

Înlocuire inversă: t = X 2 + ln X. Apoi:

g ’(X) = cos ( X 2 + ln X) · ( X 2 + ln X)’ = cos ( X 2 + ln X) · (2 X + 1/X).

Asta e tot! După cum se poate vedea din ultima expresie, întreaga problemă a fost redusă la calcularea sumei derivate.

Răspuns:
f ’(X) = 2 · e 2X + 3 ;
g ’(X) = (2X + 1/X) cos ( X 2 + ln X).

Foarte des în lecțiile mele, în loc de termenul „derivat”, folosesc cuvântul „prim”. De exemplu, cursa sumei este egală cu suma curselor. Este mai clar? Asta e bine.

Astfel, calcularea derivatei se reduce la a scăpa de aceleași lovituri conform regulilor discutate mai sus. Ca exemplu final, să revenim la puterea derivată cu un exponent rațional:

(X n)’ = n · X n − 1

Puțini oameni știu asta în rol n poate fi un număr fracționar. De exemplu, rădăcina este X 0,5. Ce se întâmplă dacă există ceva fantezist sub rădăcină? Din nou, rezultatul va fi o funcție complexă - le place să dea astfel de construcții în teste și examene.

Sarcină. Aflați derivata funcției:

Mai întâi, să rescriem rădăcina ca o putere cu un exponent rațional:

f(X) = (X 2 + 8X − 7) 0,5 .

Acum facem un înlocuitor: let X 2 + 8X − 7 = t. Găsim derivata folosind formula:

f ’(X) = f ’(t) · t ’ = (t 0,5)’ · t’ = 0,5 · t−0,5 · t ’.

Să facem înlocuirea inversă: t = X 2 + 8X− 7. Avem:

f ’(X) = 0,5 · ( X 2 + 8X− 7) −0,5 · ( X 2 + 8X− 7)’ = 0,5 · (2 X+ 8) ( X 2 + 8X − 7) −0,5 .

În sfârșit, înapoi la rădăcini: