Квантовая теория поля. Квантовая физика для чайников: суть простыми словами. Поймёт даже ребёнок. Точнее, особенно ребенок! Квантовая теория гласит что

Демонстрация, опровергнувшая предположения великого Исаака Ньютона о природе света, была ошеломляюще проста. Это «можно с легкостью повторить, где бы ни сияло солнце», - заявил английский физик Томас Юнг в ноябре 1803 года членам Королевского общества в Лондоне, описывая то, что сейчас известно, как эксперимент на двух щелях, или опыт Юнга. Юнг не искал сложных путей и не сделал из своего опыта фиглярское шоу. Он просто придумал элегантный и решительный эксперимент, демонстрирующий волновую природу света на примере обычных подручных материалов, и тем самым опроверг теорию Ньютона о том, что свет сделан из корпускул или частиц.

Опыт Юнга.

Опыт Юнга (эксперимент на двух щелях) - эксперимент, проведенный Томасом Юнгом и ставший экспериментальным доказательством волновой теории света.

В опыте пучок монохроматического света направляется на непрозрачный экран-ширму с двумя параллельными прорезями, позади которого устанавливается проекционный экран. Ширина прорезей приблизительно равна длине волны излучаемого света. На проекционном экране получается целый ряд чередующихся интерференционных полос. Интерференция света доказывает справедливость волновой теории.

Но рождение квантовой физики в начале 1900-х годов дало понимание, что свет сделан из крошечных, неделимых единиц или квантов энергии, которую мы называем фотонами. Эксперимент Юнга, демонстрировавший одиночные фотоны или даже отдельные частицы материи, такие как электроны и нейтроны, заставил человечество задуматься о природе самой реальности. Некоторые даже использовали этот эксперимент для утверждения тезиса, что на квантовый мир влияет человеческое сознание, давая умам пищу для размышления о нашем месте в онтологии Вселенной. Но действительно ли простой эксперимент может вызвать такие изменения в мировоззрении всех и каждого?

Сомнительное понятие измерения

В современной интерпретации опыта пучок монохроматического света направляется на непрозрачный экран-ширму с двумя параллельными прорезями, позади которого устанавливается проекционный экран. Он регистрирует попадание частиц, прошедших сквозь прорези. В случае фотонов это фотопластинка. По логике вещей, следовало бы ожидать, что фотоны должны пройти через одну щель или другую и накапливаться за ними.

Но это не так. Они идут в определенные части экрана, а другие просто избегают, создавая чередующиеся полосы света и темноты - так называемые интерференционные полосы. Они получаются, когда два набора волн перекрывают друг друга. Там, где волны окажутся в одной фазе, из амплитуды сложится и получится усиливающая интерференция - светлые полосы. Когда волны находятся в противофазе, возникает ослабляющая интерференция - темные полосы.

Но есть только один фотон, который пройдет через обе щели. Это похоже на то, что фотон проходит через обе щели сразу и интерферирует сам себя. Это не вписывается в классическую картинку.

С математической точки зрения, фотон, проходящий через обе щели, - это не физическая частица или физическая волна, а нечто, называемое волновой функцией - абстрактная математическая функция, которая представляет состояние фотона (в данном случае его положение). Волновая функция ведет себя как волна. Она попадает в обе щели и новые волны исходят из каждой, распространяясь и в конечном итоге сталкиваясь друг с другом. Комбинированную волновую функцию можно использовать для расчета вероятности того, где будет находиться фотон.

Джейкоб Биамонте, Сколтех, - о том, что квантовые компьютеры могут уже сейчас

Фотон с большой вероятностью будет там, где две волновые функции создают усиливающую интерференцию, и вряд ли окажется в областях ослабляющей интерференции. Измерение - в этом случае взаимодействие волновой функции с фотопластиной - называется «коллапсом» волновой функции или редукцией фон Неймана. Этот процесс происходит во время измерения в одном из тех мест, где фотон материализуется.

Редукция фон Неймана (редукция или коллапс волновой функции) - мгновенное изменение описания квантового состояния (волновой функции) объекта, происходящее при измерении. Поскольку данный процесс существенно нелокален, а из мгновенности изменения следует распространение взаимодействий быстрее скорости света, то считается, что он является не физическим процессом, а математическим приемом описания.

Не существует того, что не наблюдает человек

Этот кажущийся странным коллапс волновой функции является источником многих трудностей в квантовой механике. Перед прохождением света нельзя сказать с уверенностью, где окажется отдельно взятый фотон. Он может появиться в любом месте с ненулевой вероятностью. Невозможно нарисовать траекторию фотона от источника до точки на экране. Траекторию фотона невозможно предугадать, это вам не самолет, летающий по одному и тому же маршруту из Сан-Франциско в Нью-Йорк.

Вернер Гейзенберг, как и другие ученые, постулировал, что реальность с математической точки зрения не существует, пока отсутствует наблюдатель.

«Идея объективного реального мира, чьи части существуют так же, как и камни или деревья, и независимы от того, наблюдаем мы их или нет, невозможна», - писал он. Джон Уилер также использовал вариант эксперимента с двумя щелями, чтобы утверждать, что «ни одно элементарное квантовое явление не является таковым до тех пор, пока оно не будет засвидетельствовано окружающими («наблюдаемым», «наглядным»).

Вернер Карл Гейзенберг является автором ряда фундаментальных трудов в квантовой теории: он заложил основы матричной механики, сформулировал соотношение неопределенностей, применил формализм квантовой механики к проблемам ферромагнетизма, аномального эффекта Зеемана и прочим.

В дальнейшем активно участвовал в развитии квантовой электродинамики (теория Гейзенберга - Паули) и квантовой теории поля (теория S-матрицы), в последние десятилетия жизни предпринимал попытки создания единой теории поля. Гейзенбергу принадлежит одна из первых квантовомеханических теорий ядерных сил. Во время Второй мировой войны он был ведущим теоретиком немецкого ядерного проекта.

Джон Арчибальд Уилер ввел несколько терминов (квантовая пена, замедление нейтронов), включая два впоследствии широко распространившихся в науке и научной фантастике - черная дыра и кротовая нора.

Но квантовая теория совершенно не формулирует, что должно представлять собой «измерение». Она просто постулирует, что измерительное устройство должно быть классическим, не определяя, где эта тонкая грань между классическим и ложным измерением. Это порождает появление сторонников идеи, что человеческое сознание и вызывает коллапс волновой функции. В мае 2018 года Генри Стапп и его коллеги утверждали: эксперимент с двумя щелями и его современные варианты свидетельствуют о том, что «сознательный наблюдатель может быть незаменим» для осмысления квантовой теории и идеи того, что разум каждого человека лежит в основе материального мира.

Но эти эксперименты не являются эмпирическими доказательствами. В эксперименте с двумя щелями все, что можно сделать - это просчитать вероятность. Если вероятность проявляется у десятков тысяч идентичных фотонов при прохождении эксперимента, можно утверждать, что происходит коллапс волновой функции - благодаря сомнительному процессу, называемому измерением. Это все, что можно сделать.

Вне зависимости от человека

Кроме того, существуют другие способы интерпретации эксперимента Юнга. Например, теория де Бройля - Бома , которая утверждает, что реальность - это и волна, и частица. А фотон направляется к двойной щели с определенным начальным положением всегда и проходит через одну щель или другую. Поэтому каждый фотон имеет траекторию. Это называется распространением волны-пилота, которая проходит через обе щели, происходит интерференция, а затем волна-пилот направляет фотон в область усиливающей интерференции.

Бомовские траектории для электрона, прошедшего через две щели. Аналогичная картина была также экстраполирована из слабых измерений одиночных фотонов. Изображение: thequantumphysics

В дополнение к волновой функции на пространстве всех возможных конфигураций теория де Бройля - Бома постулирует реальную конфигурацию, которая существует, даже не будучи измеряемой. В ней волновая функция определяется для обеих щелей, но каждая частица имеет четко определенную траекторию, которая проходит точно через одну щель. Итоговое положение частицы на детекторном экране и щель, через которую она проходит, определяется начальным положением частицы. Такое исходное положение непознаваемо или неуправляемо со стороны экспериментатора, так что есть видимость случайности в закономерности детектирования.

В 1979 году Крис Дьюдни и его коллеги из колледжа Бирбека смоделировали теоретические варианты траекторий частиц, проходящих через две щели. В последнее десятилетие экспериментаторы убедились, что существуют такие траектории, хотя и с использованием достаточно спорного метода, так называемого слабого измерения. Несмотря на противоречия, эксперименты показывают, что теория де Бройля - Бома объясняет поведение квантового мира.

Биркбек (Лондонский университет) - исследовательское и образовательное учреждение с вечерней формой обучения, специализирующееся в предоставлении высшего образования. Является составной частью Лондонского университета.

Существенным в этих измерениях является то, что теории не нужны наблюдатели, измерения или человеческое участие.

Так называемые теории коллапса утверждают, что коллапс волновых функций происходит случайным образом. Чем больше частиц в квантовой системе, тем вероятнее он. Наблюдатели просто фиксируют результат. Команда Маркуса Арндта в Венском университете проверяла эти теории, отправляя все большие и большие частицы через щели. Теории коллапса гласят, что когда частицы материи становятся более массивными, чем определенный показатель, они не могут оставаться в квантовом поле, проходящем через обе щели одновременно, это разрушит интерференционную картину. Команда Арндта послала частицу с более чем 800 атомами через щели, и перераспределение интенсивности света все же произошло. Поиск критического значения продолжается.

У Роджера Пенроуза есть своя версия теории коллапса: чем выше масса объекта в квантовом поле, тем быстрее он перейдет из одного состояния в другое из-за гравитационной неустойчивости. Опять же, это теория, не требующая вмешательства человека. Сознание здесь ни при чем. Дирк Боумистер из Калифорнийского университета в Санта-Барбаре тестирует идею Пенроуза с помощью эксперимента Юнга.

По сути, идея состоит в том, чтобы не просто заставить фотон пройти через обе щели, но и поставить одну из прорезей в суперпозицию - в двух местах одновременно. По словам Пенроуза, смещенная щель будет либо оставаться в суперпозиции, либо приведет к коллапсу, пока проходит фотон, что приведет к разным типам интерференционных картин. Коллапс будет зависеть от размера щелей. Боумистер работает над этим экспериментом в течение целого десятилетия и вскоре сможет подтвердить или опровергнуть заявления Пенроуза.

Квантовый компьютер раскроет загадки генетики

Если не произойдет что-либо революционное, эти эксперименты покажут, что мы пока не можем претендовать на абсолютное познание природы реальности. Даже если попытки мотивированы математически или философски. И выводы нейробиологов и философов, не согласных с природой квантовой теории и утверждающих, что коллапс волновых функций имеет место быть, в лучшем случае преждевременны, а в худшем - ошибочны и лишь вводят всех в заблуждение.

Физика дает нам объективное понимание окружающего мира, а ее законы абсолютны и действуют на всех людей без исключения, невзирая на социальный статус и лица.

Но такое понимание указанной науки было не всегда. В конце XIX столетия были сделаны первые несостоятельные шаги к созданию теории излучения черного физического тела на основе законов классической физики. Из законов данной теории следовало, что вещество обязано отдавать определенные электромагнитные волны при любой температуре, снижать амплитуду до абсолютного нуля и терять свои свойства. Другими словами, тепловое равновесие между излучением и конкретным элементом было невозможно. Однако такое утверждение находилось в противоречии с реальным повседневным опытом.

Более детализировано и понятно квантовую физику можно пояснить следующим образом. Существует определение абсолютно черного тела, которое способно поглощать электромагнитное излучение любого спектра волны. Длина его излучения определяется только его температурой. В природе не может быть абсолютно черных тел, которые соответствуют непрозрачному замкнутому веществу с отверстием. Любой кусок элемента при нагревании начинает светиться светится, а при дальнейшем повышении градуса окрашивается сначала красным, а затем - белым. Цвет от свойств вещества практически не зависит, для абсолютно черного тела он характеризуется исключительно его температурой.

Замечание 1

Следующим этапом в развитии квантовой концепции было учение А. Эйнштейна, которое известно под гипотезой Планка.

Данная теория дала возможность ученому объяснить все закономерности уникального фотоэффекта, не укладывающиеся в пределы классической физики. Сущность указанного процесса заключается в исчезновении вещества под воздействием быстрых электронов электромагнитного излучения. Энергия испускаемых элементов не зависит от коэффициента поглощаемого излучения и определяется его характеристиками. Однако от насыщенности лучей зависит количество испускаемых электронов

Многократные эксперименты вскоре подтвердили учение Эйнштейна, причем не только с фотоэффектом и светом, но и с рентгеновскими и гамма-лучами. Эффект А. Комптона, который был найден в 1923 году, представил общественности новые факты существования неких фотонов посредством расположения упругого рассеяния электромагнитных излучений на свободных, малых электронах, сопровождаемые повышением диапазона и длины волны.

Квантовая теория поля

Данное учение позволяет определить процесс внедрения квантовых систем в рамки, называемых в науке степеней свободы, предполагающих определенное количество независимых координат, которые крайне важны для обозначения общего движения механической концепции.

Простыми словами, эти показатели являются основными характеристиками движения. Стоит отметить, что интересные открытия в сфере гармоничного взаимодействия элементарных частиц сделал исследователь Стивен Вайнберг, который открыл нейтральный ток, а именно принцип взаимосвязи между лептонами и кварками. За свое открытие в 1979-ом году физик стал лауреатом Нобелевской премии.

В квантовой теории атом состоит из ядра и конкретного облака электронов. Основа данного элемента включает в себя практически всю массу самого атома - более 95 процентов. Ядро обладает исключительно положительным зарядом, определяющий химический элемент, частью которого является сам атом. Самым необычным в строение атома является то, что ядро хоть и составляет почти всю его массу, но содержит всего одну десятитысячную его объема. Из этого следует, что плотного вещества в атоме действительно очень мало, а все остальное пространство занимает электронное облако.

Интерпретации квантовой теории - принцип дополнительности

Стремительное развитие квантовой теории привело к кардинальному изменению классических представлений о таких элементах:

  • структуре материи;
  • движении элементарных частиц;
  • причинности;
  • пространстве;
  • времени;
  • характере познания.

Такие перемены в сознании людей способствовали коренной трансформации картины мира в более четкое понятие. Для классической интерпретации материальной частицы было свойственно внезапное выделение из окружающей среды, наличие собственного движения и конкретное месторасположение в пространстве.

В квантовой теории элементарная частица стала представляться как важнейшая часть системы, в которую она была включена, однако при этом не имела собственных координат и импульса. В классическом познании движения предлагался перенос элементов, которые оставались тождественными сами себе, по заранее спланированной траектории.

Неоднозначный характер деления частицы обусловил надобность отказа от такого видения движения. Классический детерминизм уступил лидирующую позицию статистическому направлению. Если ранее все целое в элементе воспринималось как общее количество составляющих частей, то квантовая теория определила зависимость отдельных свойств атома от системы.

Классическое понимание интеллектуального процесса было напрямую связано с пониманием материального предмета как полноценно существующего самого по себе.

Квантовая теория продемонстрировала:

  • зависимость знания об объекте;
  • самостоятельность исследовательских процедур;
  • завершенность действий на ряде гипотез.

Замечание 2

Смысл этих концепций изначально был далеко не ясен, а поэтому основные положения квантовой теории всегда получали разное истолкование, а также разнообразные интерпретации.

Квантовая статистика

Параллельно с развитием квантовой и волновой механики стремительно развивались другие составные элементы квантовой теории - статистика и статистическая физика квантовых систем, которые включали в себя огромное количество частиц. На базе классических методов движения конкретных элементов была создана теория поведения их целостности- классическая статистика.

В квантовой статистике полностью отсутствует вероятность различить две частицы одинаковой природы, так как два состояния этой нестабильной концепции отличаются друг от друга только перестановкой частиц идентичной мощности влияний на сам принцип тождественности. Этим квантовые системы в основном и отличаются от классических научных систем.

Важным итогом в открытии квантовой статистики считается положение о том, что каждая частица, которая входит в какую-либо систему, не тождественна такому же элементу. Отсюда следует значимость задачи определения специфики материального предмета в конкретном сегменте систем.

Отличие квантовой физики от классической

Итак, постепенный отход квантовой физики от классической состоит в отказе от того, чтобы объяснять происходящие во времени и пространстве индивидуальные события, и применении статистического способа с его волнами вероятности.

Замечание 3

Целью классической физики является описание отдельных объектов в определенной сфере и формирование законов, управляющих изменением этих предметов во времени.

Квантовая физика в глобальном понимании физических идей занимает особое место в науке. К числу самых запоминающихся созданий человеческого ума относится теория относительности – общая и специальная, которая представляет собой абсолютно новую концепцию направлений, объединяющую электродинамику, механику и теорию тяготения.

Квантовая теория смогла окончательно разорвать связи с классическими традициями, создав новый, универсальный язык и необычный стиль мышления, позволяющий ученым проникнуть в микромир с его энергетическими составляющими и дать его полное описание посредством введения специфик, отсутствовавших в классической физике. Все эти методы в конечном итоге позволили более детализировано понять сущность всех атомных процессов, и вместе с тем именно эта теория внесла в науку элемент случайности и непредсказуемости.

КВАНТОВАЯ ТЕОРИЯ

КВАНТОВАЯ ТЕОРИЯ

теория, основы который были заложены в 1900 физиком Максом Планком. Согласно этой теории, атомы всегда излучают или принимают лучевую энергию только порциями, прерывно, а именно определенными квантами (кванты энергии), величина энергии которых равна частоте колебаний (скорость света, деленная на длину волны) соответствующего вида излучения, умноженной на планковский действия (см. Константа, Микрофизика , а также Квантовая механика). Квантовая была положена (гл. о. Эйнштейном) в основу квантовой теории света (корпускулярная теория света), по которой свет также состоит из квантов, движущихся со скоростью света (световые кванты, фотоны).

Философский энциклопедический словарь . 2010 .


Смотреть что такое "КВАНТОВАЯ ТЕОРИЯ" в других словарях:

    Имеет следующие подразделы (список неполный): Квантовая механика Алгебраическая квантовая теория Квантовая теория поля Квантовая электродинамика Квантовая хромодинамика Квантовая термодинамика Квантовая гравитация Теория суперструн См. также… … Википедия

    КВАНТОВАЯ ТЕОРИЯ, теория, которая в сочетании с теорией ОТНОСИТЕЛЬНОСТИ составила основу развития физики на протяжении всего XX в. Она описывает взаимосвязь между ВЕЩЕСТВОМ и ЭНЕРГИЕЙ на уровне ЭЛЕМЕНТАРНЫХ или субатомных ЧАСТИЦ, а также… … Научно-технический энциклопедический словарь

    квантовая теория - Другой путь исследований изучение взаимодействия материи и радиации. Термин «квант» связывают с именем М. Планка (1858 1947). Это проблема «черного тела» (абстрактное математическое понятие для обозначения объекта, аккумулирующего всю энергию … Западная философия от истоков до наших дней

    Объединяет квантовую механику, квантовую статистику и квантовую теорию поля … Большой Энциклопедический словарь

    Объединяет квантовую механику, квантовую статистику и квантовую теорию поля. * * * КВАНТОВАЯ ТЕОРИЯ КВАНТОВАЯ ТЕОРИЯ, объединяет квантовую механику (см. КВАНТОВАЯ МЕХАНИКА), квантовую статистику (см. КВАНТОВАЯ СТАТИСТИКА) и квантовую теорию поля… … Энциклопедический словарь

    квантовая теория - kvantinė teorija statusas T sritis fizika atitikmenys: angl. quantum theory vok. Quantentheorie, f rus. квантовая теория, f pranc. théorie des quanta, f; théorie quantique, f … Fizikos terminų žodynas

    Физ. теория, объединяющая квантовую механику, квантовую статистику и квантовую теорию поля. В сё основе лежит представление о дискретной (прерывистой) структуре излучения. Согласно К. т. всякая атомная система может находиться в определённых,… … Естествознание. Энциклопедический словарь

    Квантовая теория поля квантовая теория систем с бесконечным числом степеней свободы (полей физических (См. Поля физические)). К. т. п., возникшая как обобщение квантовой механики (См. Квантовая механика) в связи с проблемой описания… … Большая советская энциклопедия

    - (КТП), релятивистская квант. теория физ. систем с бесконечным числом степеней свободы. Пример такой системы эл. магн. поле, для полного описания к рого в любой момент времени требуется задание напряжённостей электрич. и магн. полей в каждой точке … Физическая энциклопедия

    КВАНТОВАЯ ТЕОРИЯ ПОЛЯ. Содержание:1. Квантовые поля................. 3002. Свободные поля и корпускулярно волновой дуализм.................... 3013. Взаимодействие полей.........3024. Теория возмущений............... 3035. Расходимости и… … Физическая энциклопедия

Книги

  • Квантовая теория
  • Квантовая теория , Бом Д.. В книге систематически изложена нерелятивистская квантовая механика. Автор детально разбирает физическое содержание и подробно рассматривает математический аппарат одного из самых важных…
  • Квантовая теория поля Возникновение и развитие Знакомство с одной из самых математизированных и абстрактных физических теорий Выпуск 124 , Григорьев В.. Квантовая теория - наиболее общая и глубокая из физических теорий современности. О том, как менялись физические представления о материи, как возникала квантовая механика, а затем и квантовая…

Тому, кто интересуется этим вопросом, не советую обращаться к материалу Википедии.
Что хорошего мы там прочитаем? Википедия отмечает что «квантовая теория поля» - «это раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы - квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений».

1. Квантовая теория поля: Первый обман. Изучение – это, как ни говори, получение и усвоение информации, которая уже собрана другими учеными. Возможно, имелось в виду «исследование»?

2. Квантовая теория поля: Второй обман. Бесконечно большого числа степеней свободы ни в одном теоретическом примере этой теории нет и не может быть. Переход от конечного числа степеней свободы к бесконечному должен сопровождаться не только количественными, но и качественными примерами. Ученые часто осуществляют обобщения следующего вида: «Рассмотрим N=2, после чего с легкостью обобщим для N = бесконечность». При этом, как правило, если автор решил (или почти решил) задачу для N=2, ему кажется, что он совершил самое трудное.

3. Квантовая теория поля: Третий обман. «Квантовое поле» и «квантованное поле» – это две большие разницы. Как между прекрасной женщиной и приукрашенной женщиной.

4. Квантовая теория поля: Четвертый обман. Насчет превращения микрочастиц. Еще одна теоретическая ошибка.

5. Квантовая теория поля: Пятый обман. Физика элементарных частиц как таковая - не наука, а шаманство.

Читаем далее.
«Квантовая теория поля является единственной экспериментально подтверждённой теорией, способной описать и предсказать поведение элементарных частиц при высоких энергиях (то есть при энергиях, существенно превышающих их энергию покоя)».

6. Квантовая теория поля: Шестой обман. Квантовая теория поля не подтверждена экспериментально.

7. Квантовая теория поля: Седьмой обман. Существуют теории, которые в большей степени согласуются с экспериментальными данными, и в их отношении столь же «обоснованно» можно говорить, что они подтверждены экспериментальными данными. Следовательно, квантовая теория поля не является и «единственной» из «подтвержденных» теорий.

8. Квантовая теория поля: Восьмой обман. Квантовая теория поля ничего ровным счетом не способна предсказать. Ни один реальный результат эксперимента не может быть даже «подтвержден» «пост фактум» этой теорией, не говоря уже о том, чтобы что-то можно было бы априорно рассчитать с ее помощью. Современная теоретическая физика на настоящем этапе все «предсказания» осуществляет на основании известных таблиц, спектров и тому подобных фактических материалов, которые пока еще никак не «сшиты» ни одной из официально принятых и признанных теорий.

9. Квантовая теория поля: Девятый обман. При энергиях, существенно превышающих энергию покоя, квантовая теория не только ничего не дает, но и постановка задачи при таких энергиях невозможна в современном состоянии физики. Дело в том, что квантовая теория поля, как и неквантовая теория поля, как и любая из ныне принятых теорий, не может ответить на простые вопросы: «Какова максимальная скорость электрона?» , а также на вопрос «Равна ли она максимальной скорости любой иной частицы?»
Теория относительности Эйнштейна утверждает, что предельная скорость любой частицы равна скорости света в вакууме, то есть эта скорость не может быть достигнута. Но в этом случае правомочен вопрос: «А какая скорость МОЖЕТ быть достигнута?»
Ответа нет. Потому что и утверждение Теории относительности не верно, и получено оно из неверных посылок, неверными математическими выкладками на основе ошибочных представлений о допустимости нелинейных преобразований.

Кстати, вообще не читайте Википедии. Никогда. Мой совет вам.

ОТВЕТ ПИРОТЕХНИКУ

В данном конкретном контексте я написал, что ОБМАНОМ ЯВЛЯЕТСЯ ОПИСАНИЕ КВАНТОВОЙ ТЕОРИИ ПОЛЯ В ВИКИПЕДИИ.
Мой вывод по статье: «Не читайте Википедии. Никогда. Мой совет вам».
Каким образом на основе моего отрицания научности некоторых статей в Википедии вы сделали вывод о том, что я «не люблю ученых»?

Я никогда, кстати, не утверждал, что «Квантовая теория поля – обман».
С точностью до наоборот. Квантовая теория поля – это экспериментально обоснованная теория, которая, естественно, не столь бессмысленна, как Специальная или Общая теория относительности.
НО ВСЕ ЖЕ – квантовая теория ОШИБОЧНА ПО ЧАСТИ ПОСТУЛИРОВАНИЯ тех явлений, которые МОГУТ БЫТЬ ВЫВЕДЕНЫ КАК СЛЕДСТВИЯ.

Квантовый (квантованный – точнее и правильнее) характер излучения горячих тел определяется не квантовой природой поля как таковой, а дискретным характером порождения колебательных импульсов, то есть СЧЕТНЫМ ЧИСЛОМ ПЕРЕХОДОВ ЭЛЕКТРОНОВ с одной орбиты на другую – с одной стороны, и ФИКСИРОВАННЫМ ОТЛИЧИЕМ ЭНЕРГИИ разных орбит.
Фиксированное отличие определяется свойствами движений электронов в атомах и молекулах.
Эти свойства должны исследоваться с привлечением математического аппарата замкнутых динамических систем.
Я это проделал.
См. статьи в конце.
Мной показано, что СТАБИЛЬНОСТЬ ОРБИТ ЭЛЕКТРОНОВ можно объяснить из обычной электродинамики с учетом ограниченной скорости электромагнитного поля. Из этих же условий можно теоретически предсказать геометрические размеры атома водорода.
Максимальный внешний диаметр атома водорода определяется как удвоенный радиус, а радиус соответствует такой потенциальной энергии электрона, которая равна кинетической энергии, вычисленной из соотношения E=mc^2/2 (эм-це-квадрат-пополам).

1. Бугров С.В., Жмудь В.А. Моделирование нелинейных движений в динамических задачах физики // Сборник научных трудов НГТУ. Новосибирск. 2009. 1(55). С. 121 – 126.
2. Zhmud V.A., Bugrov S.V. The modeling of the electron movements inside the atom on the base of the non-quantum physics. // Proceedings of the 18th IASTED International Conference “Applied Simulation and Modeling” (ASM 2009). Sept. 7-9, 2009. Palma de Mallorka, Spain. P.17 – 23.
3. Жмудь В.А. Обоснование нерелятивистского неквантового подхода к моделированию движения электрона в атоме водорода // Сборник научных трудов НГТУ. Новосибирск. 2009. 3(57). С. 141 – 156.

Кстати, среди возможных ответов на вопрос «За что Вы так не любите учёных?»

ПОТОМУ ЧТО Я ЛЮБЛЮ НАУКУ.

А кроме шуток: Ученые не должны стремиться к любви или не любви. Они должны стремиться к истине. Тех, кто стремится к истине, я «люблю умом», не зависимо от того, ученые они, или нет. То есть – ОДОБРЯЮ. Люблю сердцем я вовсе не за это. Не за стремление к истине. Эйнштейн стремился к истине, но не всегда, не везде. Как только он предпочел стремиться к доказательству безошибочности своей теории, он забыл напрочь об истине. После этого как ученый он в моих глазах потускнел довольно изрядно. Надо было бы ему задуматься покрепче о газовой природе гравитационных линз, о «почтовой» природе запаздывания информации – мы же не судим по датам прибытия на письмах времени их отправки! Эти две даты всегда не совпадают. Мы не отождествляем их. С какой же тогда стати отождествлять воспринимаемое время, воспринимаемую скорость и прочее с действительными временем, скоростью и прочим?
Насчет того, что я не люблю читателей? Здравствуйте! Я пытаюсь открыть им глаза. Разве это – не любить?
Я люблю даже тех рецензентов, которые возражают. Причем, тех, кто возражает обоснованно, я особо люблю. Тех же, кто стремится не возразить, а просто отрицать, утверждать обратное безо всяких на то оснований, не вчитываясь в мои аргументы – таких мне просто жаль.
«Зачем они пишут примечание к тому, что даже не прочитали?» – думаю я.

В заключение - шутка для моих читателей, которые устали от длинных рассуждений.

КАК НАПИСАТЬ НОБЕЛЕВСКУЮ РЕЧЬ

1. Получите Нобелевскую премию.
2. Оглянитесь вокруг себя. Вы обнаружите множество добровольных бесплатных помощников, которые сочтут за честь написать за вас эту речь.
3. Прочитайте предложенные четыре варианта. От души посмейтесь. Напишите что угодно – это все равно будет лучше любого из этих вариантов, а они, эти варианты, безусловно, лучше того, что вы можете написать, минуя пункт 1 настоящей последовательности.

А главное, отказываемся замечать, что применимы они лишь в некоторых рутинных ситуациях и для объяснения устройства Вселенной оказываются попросту неверны.

Хотя нечто подобное уже столетия назад высказывалось восточными философами и мистиками, в западной науке впервые об этом заговорил Эйнштейн. Это была революция, которую наше сознание не приняло. Со снисходительностью мы повторяем: «все относительно», «время и пространство едины», - всегда держа в уме, что это допущение, научная абстракция, имеющая мало общего с нашей привычной устойчивой действительностью. На самом же деле как раз наши представления слабо соотносятся с действительностью - удивительной и невероятной.

После того как в общих чертах было открыто строение атома и предложена его «планетарная» модель, ученые столкнулись с множеством парадоксов, для объяснения которых появился целый раздел физики - квантовая механика. Она быстро развивалась и далеко продвинулась в объяснении Вселенной. Но объяснения эти настолько сложны для восприятия, что до сих пор мало кто может осознать их хотя бы в общих чертах.

Действительно, большинство достижений квантовой механики сопровождаются настолько сложным математическим аппаратом, что он попросту не переводится ни на один из человеческих языков. Математика, как и музыка, предмет крайне абстрактный, и над адекватным выражением смысла, к примеру, свертывания функций или многомерных рядов Фурье ученые бьются до сих пор. Язык математики строг, но мало соотносится с нашим непосредственным восприятием.

Кроме того, Эйнштейн математически показал, что наши понятия времени и пространства иллюзорны. В действительности пространство и время нераздельны и образуют единый четырехмерный континуум. Представить его вряд ли возможно, ведь мы привыкли иметь дело только с тремя измерениями.

Планетарная теория. Волна или частица

До конца XIX века атомы считались неделимыми «элементами». Открытие радиации позволило Резерфорду проникнуть под «оболочку» атома и сформулировать планетарную теорию его строения: основная масса атома сосредоточена в ядре. Положительный заряд ядра компенсируется отрицательно заряженными электронами, размеры которых настолько малы, что их массой можно пренебречь. Электроны вращаются вокруг ядра по орбитам, подобно вращению планет вокруг Солнца. Теория весьма красивая, но возникает ряд противоречий.

Во-первых, почему отрицательно заряженные электроны не «падают» на положительное ядро? Во-вторых, в природе атомы сталкиваются миллионы раз в секунду, что ничуть не вредит им - чем объяснить удивительную прочность всей системы? Говоря словами одного из «отцов» квантовой механики Гейзенберга, «никакая планетная система, которая подчиняется законам механики Ньютона, никогда после столкновения с другой подобной системой не возвратится в свое исходное состояние».

Кроме того, размеры ядра, в котором собрана практически вся масса, в сравнении с целым атомом чрезвычайно малы. Можно сказать, что атом - пустота, в которой с бешеной скоростью вращаются электроны. При этом такой «пустой» атом предстает как весьма твердая частица. Объяснение этому явлению выходит за рамки классического понимания. На самом деле, на субатомном уровне скорость частицы возрастает тем больше, чем больше ограничивается пространство, в котором она движется. Так что чем ближе электрон притягивается к ядру, тем быстрее он движется и тем больше отталкивается от него. Скорость движения настолько велика, что «со стороны» атом «выглядит твердым», как выглядят диском лопасти вращающегося вентилятора.

Данные, плохо укладывающиеся в рамки классического подхода, появились задолго до Эйнштейна. Впервые подобная «дуэль» состоялась между Ньютоном и Гюйгенсом, которые пытались объяснить свойства света. Ньютон утверждал, что это поток частиц, Гюйгенс считал свет волной. В рамках классической физики примирить их позиции невозможно. Ведь для нее волна - это передающееся возбуждение частиц среды, понятие, применимое лишь для множества объектов. Ни одна из свободных частиц не может перемещаться по волнообразной траектории. Но вот в глубоком вакууме движется электрон, и его перемещения описываются законами движения волн. Что здесь возбуждается, если нет никакой среды? Квантовая физика предлагает соломоново решение: свет является одновременно и частицей, и волной.

Вероятностные электронные облака. Строение ядра и ядерные частицы

Постепенно становилось все более ясно: вращение электронов по орбитам вокруг ядра атома совершенно не похоже на вращение планет вокруг звезды. Обладая волновой природой, электроны описываются в терминах вероятности. Мы не можем сказать об электроне, что он находится в такой-то точке пространства, мы можем только описать примерно, в каких областях он может находиться и с какой вероятностью. Вокруг ядра электроны формируют «облака» таких вероятностей от простейшей шарообразной до весьма причудливых форм, похожих на фотографии привидений.

Но тот, кто хочет окончательно понять устройство атома, должен обратиться к его основе, к строению ядра. Составляющие его крупные элементарные частицы - положительно заряженные протоны и нейтральные нейтроны - также обладают квантовой природой, а значит, движутся тем быстрее, чем в меньший объем они заключены. Поскольку размеры ядра чрезвычайно малы даже в сравнении с атомом, эти элементарные частицы носятся со вполне приличными скоростями, близкими к скорости света. Для окончательного объяснения их строения и поведения нам понадобится «скрестить» квантовую теорию с теорией относительности. К сожалению, такая теория до сих пор не создана и нам придется ограничиться несколькими общепринятыми моделями.

Теория относительности показала (а проведенные эксперименты доказали), что масса является лишь одной из форм энергии. Энергия - величина динамическая, связанная с процессами или работой. Поэтому элементарную частицу следует воспринимать как вероятностную динамическую функцию, как взаимодействия, связанные с непрерывным превращением энергии. Это дает неожиданный ответ на вопрос, насколько элементарны элементарные частицы, можно ли разделить их на «еще более простые» блоки. Если разогнать две частицы в ускорителе, и затем столкнуть, мы получим не две, а три частицы, причем совершенно одинаковые. Третья просто возникнет из энергии их столкновения - таким образом, они и разделятся, и не разделятся одновременно!

Участник вместо наблюдателя

В мире, где понятия пустого пространства, изолированной материи теряют смысл, частица описывается только через ее взаимодействия. Для того чтобы сказать что-то о ней, нам придется «вырвать» ее из первоначальных взаимодействий и, подготовив, подвергнуть другому взаимодействию - измерению. Так что мы меряем в итоге? И насколько правомерны наши измерения вообще, если наше вмешательство меняет взаимодействия, в которых участвует частица, - а значит, меняет и ее саму?

В современной физике элементарных частиц все больше нареканий вызывает... сама фигура ученого-наблюдателя. Правомернее было бы называть его «участником».

Наблюдатель-участник необходим не только для измерения свойств субатомной частицы, но и для того, чтобы определить эти самые свойства, ведь и о них можно говорить лишь в контексте взаимодействия с наблюдателем. Стоит ему выбрать способ, каким он будет проводить измерения, и в зависимости от этого реализуются возможные свойства частицы. Стоит сменить наблюдающую систему, и свойства наблюдаемого объекта также изменятся.

Этот важный момент раскрывает глубинное единство всех вещей и явлений. Сами частицы, непрерывно переходя одна в другую и в иные формы энергии, не имеют постоянных или точных характеристик - эти характеристики зависят от способа, каким мы решили их видеть. Если понадобится измерить одно свойство частицы, другое непременно изменится. Такое ограничение не связано с несовершенством приборов или другими вполне исправимыми вещами. Это характеристика действительности. Попробуйте точно измерить положение частицы, и вы ничего не сможете сказать о направлении и скорости ее движения - просто потому, что у нее их не будет. Опишите точно движение частицы - вы не найдете ее в пространстве. Так современная физика ставит перед нами проблемы уже совершенно метафизического свойства.

Принцип неопределенности. Место или импульс, энергия или время

Мы уже говорили, что разговор о субатомных частицах нельзя вести в привычных нам точных терминах, в квантовом мире нам остается лишь вероятность. Это, конечно, не та вероятность, о которой говорят, делая ставки на скачках, а фундаментальное свойство элементарных частиц. Они не то чтобы существуют, но скорее - могут существовать. Они не то чтобы обладают характеристиками, а скорее - могут ими обладать. Научно выражаясь, частица является динамической вероятностной схемой, и все ее свойства находятся в постоянном подвижном равновесии, балансируют, как Инь и Ян на древнем китайском символе тайцзи.

Недаром нобелевский лауреат Нильс Бор, возведенный в дворянское звание, для своего герба выбрал именно этот знак и девиз: «Противоположности дополняют друг друга». Математически распределение вероятности представляет собой неравномерные волновые колебания. Чем больше амплитуда волны в определенном месте, тем выше вероятность существования частицы в нем. При этом длина ее непостоянна - расстояния между соседними гребнями неодинаковы, и чем выше амплитуда волны, тем сильнее разница между ними. В то время как амплитуда соответствует положению частицы в пространстве, длина волны связана с импульсом частицы, то есть с направлением и скоростью ее движения. Чем больше амплитуда (чем точнее можно локализовать частицу в пространстве), тем более неопределенной становится длина волны (тем меньше можно сказать об импульсе частицы). Если мы сможем установить положение частицы с предельной точностью, у нее вообще не будет никакого определенного импульса.

Это фундаментальное свойство математически выводится из свойств волны и называется принципом неопределенности. Принцип касается и других характеристик элементарных частиц. Еще одна такая взаимосвязанная пара - это энергия и время протекания квантовых процессов. Чем быстрее проходит процесс, тем более неопределенно количество энергии, задействованной в нем, и наоборот - точно охарактеризовать энергию можно только для процесса достаточной продолжительности.

Итак, мы поняли: о частице нельзя сказать ничего определенного. Она движется туда, или не туда, а верней, ни туда и ни сюда. Ее характеристики такие или сякие, а точнее – и не такие, и не сякие. Она находится здесь, но может быть и там, а может и не быть нигде. Так существует ли она вообще?