Кинетика ферментативных реакций. Зависимость скорости ферментативных реакций от концентрации субстратов, ферментов, температуры Каков порядок ферментативной реакции по ферменту

Скорость ферментативных реакций зависит от концентрации суб-

страта. Эта зависимость носит сложный характер, который для определенных ферментов описывается параболической кривой (рис. 29).

Рисунок 29 – Зависимость скорости ферментативной реакции

от концентрации субстрата

Параболический характер зависимости объясняется тем, что при взаимодействии фермента с субстратом происходит образование фермент-субстратного комплекса. Первоначально при увеличении концентрации субстрата происходит возрастание концентрации фермент-субстратных комплексов в реакционной смеси, что проявляется в параллельном повышении скорости реакции. При определенной концентрации субстрата (насыщающей) возникает своеобразное “насышение” всех активных центров молекул ферментов в реакционной смеси. Скорость ферментативной реакции при насыщающей концентрации становится максимальной. При дальнейшем повышении содержания субстрата в реакционной смеси она не изменяется.

Из графика зависимости скорости ферментативной реакции от концентрации субстрата вычисляются два важных показателя:

1. Максимальная скорость реакции (V max). Она определяется как скорость реакции при насыщающей концентрации субстрата. Величина макси-мальной скорости отражает каталитическую мощность фермента. Ферменты, обладающие большей величиной V max , являются более мощными катализаторами. В единицу времени они катализируют превращение большего количества молекул субстрата. Величина максимальной скорос-ти выражается числом оборотов фермента. Число оборотов оценивается количеством молекул субстрата, превращаемых ферментом в единицу времени (с -1). Для большинства ферментов число оборотов находится в пределах 10 4 . В тоже время существуют ферменты, для которых число оборотов значительно больше (600000 – для карбангидразы) или меньше этой величины (100 – для химотрипсина).

2. Константа Михаэлиса (К м). Константа Михаэлиса представляет собой концентрацию субстрата, при которой скорость реакции составляет половину максимальной. Величина К м отражает сродство фермента к суб-страту. Чем больше эта величина, тем меньшее сродство к субстрату имеет фермент. К м выражается в молях субстрата. Так, величина К м по отношению к глюкозе у фермента глюкокиназы составляет 10 ммоль, а для гексокиназы – 0,01 ммоль. Гексокиназа проявляет большее сродство к глюкозе, чем глюкокиназа, при одинаковой концентрации субстрата она с большей скоростью катализирует фосфорилирование глюкозы.



На основании математического анализа кривой зависимости скорости ферментативной реакции от концентрации субстрата Л. Михаэлисом и М. Ментен (1913) была выведена формула, позволяющая оценить взаимоотношение между скоростью реакции, максимальной скоростью и константой Михаэлиса. В настоящее время она определяется как уравнение Михаэлиса – Ментен.

V o = V max [S ]/K м + [S ],

где V o – скорость реакции, S – концентрация субстрата.

Общие свойства ферментов

Несмотря на существование определенных различий в строении, функции и внутриклеточной локализации, для ферментов характерен целый ряд общих свойств. К таковым относятся зависимость проявления их каталитической активности от температуры (термолабильность) и рН среды, а также субстратная специфичность.

Характерным свойством ферментов является термолабильность . Это явление может быть проиллюстрировано графиком зависимости скорости ферментативной реакции от температуры реакционной смеси (рис. 30).

Рисунок 30 – Зависимость скорости ферментативной реакции от температуры

реакционной среды (t опт – оптимальная температура; V – скорость реакции)



Как видно из представленного графика при температуре, близкой к 4 о С ферментативные реакции практически не идут. По этой причине биологические объекты могут определенное время храниться перед проведением биохимических исследований на холоде. Именно холод позволяет сохранять пищевые продукты от аутолиза (самопереваривания).

Повышение температуры сопровождается повышением скорости ферментативной реакции. Причиной этого является повышение кинетичес-кой энергии молекул субстрата и фермента, способствующее повышению скорости взаимодействия между ними. Подобное явление наблюдается до температуры, которая соответствует температурному оптимуму фермента. Температурный оптимум фермента соответствует той температуре, при которой скорость ферментативной реакции максимальна. Для ферментов теплокровных животных оно обычно составляет 28 о С или 37 о С.

Дальнейшее повышение температуры реакционной смеси приводит к постепенному понижению скорости ферментативной реакции. Это явление обусловлено процессом термоденатурации полипептидной цепи белка. Денатурация сопровождается изменением структуры активного центра фермента, следствием чего и становится понижение сродства фермента к суб-страту. При температуре выше 55 о С большинство ферментов полностью утрачивает каталитические свойства (инактивируется). В этой связи прогревание до 55–56 о С широко используется для процедуры пастеризации, которая повышает срок хранения пищевых продуктов (молока и др.).

Большое влияние на скорость ферментативной реакции оказывает рН среды. Как видно из представленного на рис. 31 графика, он напоминает по форме график зависимости скорости ферментативной реакции от температуры.

Рисунок 31 – Зависимость скорости (V ) ферментативной реакции

от рН среды (рН опт – рН оптимум фермента)

Резкое снижение скорости ферментативной реакции при экстремальных значениях рН связано с явлением денатурации полипептидной цепи белковой молекулы под действием кислот и щелочей. Фермент проявляет максимальную каталитическую мощность при величине рН, которая определяется термином рН-оптимум фермента. Большинство известных ферментов имеет оптимум рН в области от 5,0 до 7,5. Вместе с тем существует немало примеров ферментов, у которых величина рН-оптимума смещена в область кислых или щелочных значений рН. К таким ферментам относятся:

Причина существования зависимости скорости ферментативных реакций от рН связана с тем, что величина рН среды оказывает выраженное влияние на степень ионизации функциональных групп субстрата. Особенности ионизации молекулы янтарной кислоты при различной кислотности среды (рН):

Одновременно рН среды оказывает влияние и на степень ионизации аминокислотных радикалов, входящих в состав активного центра фермента:

Если образование фермент-субстратного комплекса стабилизируется за счет электростатических взаимодействий, то становится понятной роль рН в обеспечении оптимальных условий для течения ферментативной реакции (рис. 24).

Скорость реакций катализируемых ферментами, во взаимодействии которых с субстратами не имеют существенного значения электростали-ческие взаимодействия, в меньшей мере зависит от рН среды. На рис. 32 представлена зависимость скорости гидролиза белков папаином. Во взаимодействии этого фермента с субстратом основное значение приобретают гидрофобные взаимодействия. Как видно из представленного графика, у папаина вообще отсутствует четко выраженный рН-оптимум.

Рисунок 32 – Влияние рН на скорость гидролиза белка папаином.

Ферменты обладают определенной специфичностью в отношении субстратов. Под специфичностью подразумевается свойство ферментов катализировать превращение одного или группы сходных по строению субстратов. Существует несколько видов специфичности ферментов.

· Абсолютная специфичность. Под ней подразумевается способность фермента катализировать превращение только одного субстрата. К ферментам, обладающим абсолютной специфичностью, относятся аргиназа, уриказа рестриктазы и др.

· Относительная специфичность . Под ней подразумевается способность фермента катализировать превращение группы сходных по строению субстратов (т.н. протеолитические ферменты гидролизуют различные белки, липаза сложные эфиры глицерина и высших жирных кис-лот, гексокиназа фосфорилирует разные моносахариды). При этом специфичность определяется тем, что фермент оказывает влияние только на определенный тип связи (протеолитические ферменты гидролизуют пептидную связь, липаза гидролизует сложную эфирную связь и т.д.).

· Стереоспецифичность. Под этим термином подразумевается свойство фермента катализировать превращение одного стереоизомера субстрата. Так, ферменты, участвующие в превращении моносахаридов, проявляют специфичность по отношению к их D -стереоизомерам, а ферменты, участвующие в превращении аминокислот, – к их L -стерео-изомерам.

Активность ферментов

Особенностью ферментов как катализаторов является то, что они под действием разных внешних факторов способны изменять свои каталитические свойства. Мерой проявления силы каталитического действия ферментов является их активность . Способность ферментов менять свою активность в различных условиях имеет большой биологический смысл. Это свойство позволяет живой клетке приспосабливать состояние обменных процессов под сиюминутные потребности клеток, которые могут существенно изменяться под влиянием различных внешний факторов.

Определение активности ферментов играет важную роль их характеристике. Существуют некоторые общие принципы количественного определения активности ферментов. Активность ферментов можно определять так:

· либо по скорости накопления в реакционной смеси, где находится фермент продукта реакции;

· либо по скорости исчезновения из реакционной смеси субстрата ферментативной реакции.

Оба эти подхода равнозначны и могут быть использованы на практике. Однако при определении активности фермента необходимо соблюдать следующие условия: в реакционной смеси, в которой проводится определение активности фермента,

· температура должна соответствовать температурному оптимуму данного фермента;

· рН среды должна соответствовать рН-оптимуму данного фермента;

· концентрация субстрата должна быть не меньше насыщающей;

· должны присутствовать кофакторы, если таковые у этого фермента существуют;

· должны присутствовать активаторы фермента.

Таким образом, активность фермента определяется в оптимальных для него условиях. В этих условиях активность фермента пропорциональна его содержанию в исследуемом образце и поэтому может использоваться для косвенной оценки его концентрации.

Активность фермента количественно выражается в единицах активности . За одну единицу активности фермента (ЕД) принимается активность фермента, при которой под его влиянием происходит образование 1 мкмоль продукта реакции (или исчезновение 1 мкмоль суб-страта) в минуту . В системе СИ за единицу ферментативной активности принят катал (кат). 1 катал соответствует активности фермента, при которой происходит образование одного моля продукта реакции (исчезновение одного моля субстрата) за секунду.

Для характеристики ферментов используют также величину удельной активности. Эта единица отражает активность фермента в расчете на единицу его массы и выражается в мкмоль/мин мг белка. Единицы удельной активности используют для оценки чистоты ферментных препаратов. Чем выше величина удельной активности, тем чище ферментный препарат.

Ферментативная кинетика изучает влияние различных факторов (концентрация S и E, рН, температура, давление, ингибиторы и активаторы) на скорость ферментативных реакций. Главной целью изучения кинетики ферментативных реакций является получение информации, позволяющей глубже понять механизм действия ферментов.

Кинетическая кривая позволяет определить начальную скорость реакции V 0 .

Кривая субстратного насыщения.

Зависимость скорости реакции от концентрации фермента.

Зависимость скорости реакции от температуры.

Зависимость скорости реакции от рН.

Оптимум рН действия большинства ферментов лежит в пределах физиологических значений 6,0-8,0. Пепсин активен при рН 1,5-2,0, что соответствует кислотности желудочного сока. Аргиназа, специфичный фермент печени, активен при 10,0. Влияние рН среды на скорость ферментативной реакции связывают с состоянием и степенью ионизации ионогенных групп в молекуле фермента и субстрата. Этот фактор определяет конформацию белка, состояние активного центра и субстрата, формирование фермент-субстратного комплекса, собственно процесс катализа.

Математическое описание кривой субстратного насыщения, константа Михаэлиса .

Уравнение, описывающее кривую субстратного насыщения, было предложено Михаэлисом и Ментон и носит их имена (уравнение Михаэлиса-Ментен):

V = (V MAX *[ S ])/(Km +[ S ]) , где Km – константа Михаэлиса. Легко рассчитать, что при V = V MAX /2 Km = [S], т.е. Km – это концентрация субстрата, при которой скорость реакции составляет ½ V MAX .

С целью упрощения определения величины V MAX и Km уравнение Михаэлиса-Ментен можно пересчитать.

1/V = (Km+[S])/(V MAX *[S]),

1/V = Km/(V MAX *[S]) + 1/V MAX ,

1/ V = Km / V MAX *1/[ S ] + 1/ V MAX уравнение Лайнуивера-Берка. Уравнение, описывающее график Лайнуивера-Берка – это уравнение прямой линии (y = mx + c), где 1/V MAX – это отрезок, отсекаемый прямой на оси ординат; Km/V MAX - тангенс угла наклона прямой; пересечение прямой с осью абсцисс дает величину 1/Km. График Лайнуивера-Бэрка позволяет определить Km по относительно небольшому числу точек. Этот график также используют при оценке действия ингибиторов, о чем будет сказано ниже.

Значение Km изменяются в широких пределах: от 10 -6 моль/л для очень активных ферментов, до 10 -2 – для малоактивных ферментов.

Оценки Km имеют практическую ценность. При концентрациях субстрата в 100 раз превышающих Km, фермент будет работать практически с максимальной скоростью, поэтому максимальная скорость V MAX будет отражать количество присутствующего активного фермента. Это обстоятельство используют для оценки содержания фермента в препарате. Кроме того, Km является характеристикой фермента, что используется для диагностики энзимопатий.

Ингибирование активности ферментов.

Чрезвычайно характеристикой и важной особенностью ферментов является их инактивация под влиянием определенных ингибиторов.

Ингибиторы – это вещества, вызывающие частичное или полное торможение реакций, катализируемых ферментами.

Ингибирование ферментативной активности может быть необратимым или обратимым, конкурентным или неконкрентным.

Необратимое ингибирование – это стойкая инактивация фермента, возникающая в результате ковалентного связывания молекулы ингибитора в активном центре или в другом особом центре, изменяющим конформацию фермента. Диссоциация столь устойчивых комплексов с регенерацией свободного фермента практически исключена. Для преодоления последствий такого ингибирования организм должен синтезировать новые молекулы фермента.

Обратимое ингибирование – характеризуется равновесным комплексообразованием ингибитора с ферментом за счет нековалентных связей, вследствие чего такие комплексы способны к диссоциации с восстановлением активности фермента.

Классификация ингибиторов на конкурентные и неконкурентные основана на том, ослабляется (конкурентное ингибирование ) или не ослабляется (неконкурентное ингибирование ) их ингибирующие действие при повышении концентрации субстрата.

Конкурентные ингибиторы – это, как правило, соединения, структура которых сходна со структурой субстрата. Это позволяет им связываться в том же активном центре, что и субстраты, препятствуя взаимодействию фермента с субстратом уже на стадии связывания. После связывания ингибитор может быть превращен в некий продукт или остается в активном центре, пока не произойдет диссоциация.

Обратимое конкурентное ингибирование можно представить в виде схемы:

E↔ E-I → E + P 1

S (неакт)

Степень ингибирования фермента определяется соотношением концентраций субстрата и фермента.

Классическим примером подобного типа ингибирования является торможение активности сукцинатдегидрогеназы (СДГ) малатом, который вытесняет сукцинат из субстратного участка и препятствует его превращению в фумарат:

Ковалентное связывание ингибитора в активном центре приводит к инактивации фермента (необратимое ингибирование). Примером необратимого конкурентного ингибирования может служить инактивация триозофосфатизомеразы 3-хлорацетолфосфатом. Этот ингибитор является структурным аналогом субстрата – диоксиацетонфосфата и необратимо присоединяется к остатку глутаминовой кислоты в активном центре:

Некоторые ингибиторы действуют менее избирательно, взаимодействуя с определенной функциональной группой в составе активного центра разных ферментов. Так, связывание йодацетата или его амида с SH-группой аминокислоты цистеина, находящийся в активном центре фермента и принемающей участие в катализе, приводит к полной утрате активности фермента:

R-SH + JCH 2 COOH → HJ + R-S-CH 2 COOH

Поэтому эти ингибиторы инактивируют все ферменты, которые имеют SH-группы, участвующие в катализе.

Необратимое ингибирование гидролаз при действии нервно-паралитических газов (зарин, зоман) обусловлено их ковалентным связыванием с остатком серина в активном центре.

Метод конкурентного ингибирования нашел широкое применение в медицинской практике. Сульфаниламидные препараты – антагонисты п-аминобензойной кислоты, могут служить примером метаболизируемых конкурентных ингибиторов. Они связываются с дигидроптератсинтетазой – бактериальным ферментом, осуществляющим превращение п-аминобензоата в фолиевую кислоту, необходимую для роста бактерий. Бактерия погибает в результате того, что связавшийся сульфаниламид превращается в другое соединение и фолиевая кислота не образуется.

Неконкурентные ингибиторы обычно связываются с молекулой фермента в участке, отличном от места связывания субстрата, и субстрат непосредственно не конкурирует с ингибитором. Поскольку ингибитор и субстрат связываются с разными центрами возможно образование как комплекса E-I, так и комплекса S-E-I. Комплекс S-E-I тоже распадается с образованием продукта, однако с меньшей скоростью, чем E-S, поэтому реакция будет замедляться, но не остановится. Таким образом, могут протекать следующие параллельные реакции:

E↔ E-I ↔ S-E-I → E-I + P

Обратимое неконкурентное ингибирование встречается сравнительно редко.

Неконкурентные ингибиторы называют аллостерическими в отличие от конкурентных (изостерических ).

Обратимое ингибирование может быть количественно изучено на основе уравнения Михаэлиса-Ментен.

При конкурентном ингибировании V MAX остается постоянной, а Km возрастает.

При неконкурентном ингибировании снижается V MAX при неизменном Km.

Если продукт реакции ингибирует фермент, катализирующий его образование, такой способ ингибирования называется ретроингибированием или ингибированием по принципу обратной связи . Например, глюкоза тормозит глюкозо-6-фосфатазу, которая катализирует гидролиз глюкозо-6-фосфата.

Биологическое значение такого ингибирования – регуляция определенных метаболических путей (см. следующее занятие).

ПРАКТИЧЕСКАЯ ЧАСТЬ

Задание студентам

1. Изучить денатурацию белков под действием растворов минеральных и органических кислот и при нагревании.

2. Обнаружить кофермент НАД в дрожжах.

3. Определить амилазную активность в моче (сыворотке крови).

9. ЭТАЛОНЫ ОТВЕТОВ НА ЗАДАЧИ , тестовые вопросы, используемые при контроле знаний на занятии (можно в виде приложения)

10. ХАРАКТЕР И ОБЪЕМ ВОЗМОЖНОЙ УЧЕБНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЫ ПО ТЕМЕ

(Указать конкретно характер и форму УИРС: подготовка реферативных выступлений, проведение самостоятельных исследований, имитационная игра, оформление истории болезни с использованием монографической литературы и др. формы)

Ферментативная кинетика изучает скорость реакций, катализируемых ферментами в зависимости от различных условий (концентрации, температуры, pH и др.) их взаимодействия с субстратом.

Однако ферменты - это белки, чувствительные к влиянию различных внешних воздействий. Поэтому при изучении скорости ферментативных реакций учитывают, главным образом, концентрации реагирующих веществ, а влияние температуры, pH среды, активаторов, ингибиторов и прочих факторов стараются свести к минимуму и создают стандартные условия. Во-первых, это оптимальное для данного фермента значение pH среды. Во-вторых, рекомендуется придерживаться температуры 25°С, в тех случаях, где это возможно. В-третьих, достигают полного насыщения фермента субстратом. Этот момент особенно важен, поскольку при низкой концентрации субстрата не все молекулы фермента участуют в реакции (рис. 6.5, а ), значит и результат будет далек от максимально возможного. Наибольшая мощность катализируемой реакции, при прочих равных условиях, достигается, если каждая молекула фермента участвует в превращении, т.е. при высокой концентрации фермент-субстратного комплекса (рис. 6.5, в). Если же концентрация субстрата не обеспечивает полного насыщения фермента (рис. 6.5, б ), то скорость протекающей реакции не достигает максимального значения.

Рис. 65.

а - при низкой концентрации субстрата; 6 - при недостаточной концентрации субстрата; в - при полном насыщении фермента субстратом

Скорость ферментативной реакции, измеренной при соблюдении перечисленных условий, и полном насыщении фермента субстратом называют максимальной скоростью ферментативной реакции (V).

Скорость ферментативной реакции, определяемая при неполном насыщении фермента субстратом, обозначается v.

Ферментативный катализ упрощенно можно описать схемой

где F - фермент; S - субстрат; FS - фермент-субстратный комплекс.

Каждая стадия этого процесса характеризуется определенной скоростью. Единицей измерения скорости ферментативной реакции служит количество молей субстрата, превращаемое в единицу времени (как и скорость обычной реакции).

Взаимодействие фермента с субстратом приводит к образованию фермент-субстратного комплекса, но этот процесс обратимый. Скорости прямой и обратной реакций зависят от концентраций реагирующих веществ и описываются соответствующими уравнениями:

В состоянии равновесия справедливо уравнение (6.3), поскольку скорости прямой и обратной реакции равны.

Подставив значения скорости прямой (6.1) и обратной (6.2) реакции в уравнение (6.3), получим равенство:

Состояние равновесия характеризуется соответствующей константой равновесия К р, равной отношению констант прямой и обратной реакций (6.5). Величина, обратная константе равновесия, называется субстратной константой K s , или константой диссоциации фермент-субстратного комплекса:


Из уравнения (6.6) ясно, что субстратная константа уменьшается при высокой концентрации фермент-субстратного комплекса, т.е. при большой его устойчивости. Следовательно, субстратная константа характеризует сродство фермента и субстрата и соотношение констант скоростей образования и диссоциации фермент-субстратного комплекса.

Явление насыщения фермента субстратом изучали Леонор Михаэлис и Мод Мептен. На основе математической обработки результатов ими было выведено уравнение (6.7), получившее их имена, из которого ясно, что при высокой концентрации субстрата и низком значении субстратной константы скорость ферментативной реакции стремится к максимальной. Однако это уравнение носит ограниченный характер, поскольку учитывает не все параметры:

Фермент-субстратный комплекс в процессе реакции может подвергаться превращениям в разных направлениях:

  • диссоциировать на исходные вещества;
  • превращаться в продукт, от которого отделяется фермент в неизменном виде.

Поэтому для описания суммарного действия ферментативного процесса введено понятие константы Михаэлиса К т, которая выражает взаимосвязь констант скоростей всех трех реакций ферментативного катализа (6.8). Если оба слагаемых разделить на константу скорости реакции образования фермент-субстратного комплекса, то получится выражение (6.9):


Из уравнения (6.9) вытекает важное следствие: константа Михаэлиса всегда больше субстратной константы на величину k 2 /k v

Численно К т равна такой концентрация субстрата, при которой скорость реакции составляет половину максимально возможной скорости и соответствует такому насыщению фермента субстратом, как на рис. 6.5, б. Поскольку на практике не всегда удается достичь полного насыщения фермента субстратом, то именно К т используется для сравнительной характеристики кинетических характеристик ферментов.

Скорость ферментативной реакции при неполном насыщении фермента субстратом (6.10) зависит от концентрации фермент-субстратного комплекса. Коэффициентом пропорциональности служит константа реакции освобождения фермента и продукта, поскольку при этом меняется концентрация фермент-субстратного комплекса:

После преобразований, с учетом представленных выше зависимостей, скорость ферментативной реакции при неполном насыщении фермента субстратом описывается уравнением (6.11), т.е. зависит от концентраций фермента, субстрата и их сродства K s:

Графическая зависимость скорости ферментативной реакции от концентрации субстрата не является линейной. Как очевидно из рис. 6.6, с увеличением концентрации субстрата наблюдается рост активности фермента. Однако при достижении максимального насыщения фермента субстратом скорость ферментативной реакции становится максимальной. Следовательно, фактором, ограничивающим скорость реакции, является образование фермент-субстратного комплекса.

Практика показала, что концентрации субстратов, как правило, выражаются значениями намного меньше единицы (10 6 -10 3 моль). Оперировать такими величинами в расчетах довольно сложно. Поэтому Г. Лайнуивер и Д. Берк предложили выражать графическую зависимость скорости ферментативной реакции не в прямых координатах, а в обратных. Они исходили из предположения, что для равных величин равны и обратные им значения:

Рис. 6.6.

После преобразования выражения (6.13) получается выражение, называемое уравнением Лайнуивера - Бэрка (6.14):

Графическая зависимость уравнения Лайнуивера- Берка носит линейный характер (рис. 6.7). Кинетические характеристики фермента определяются следующим образом:

  • отрезок, отсекаемый на оси ординат, равен 1/V;
  • отрезок, отсекаемый на оси абсцисс, равен -1 /К т.

Рис. 6.7.

Считается, что метод Лайнуивера - Берка позволяет более точно, чем в прямых координатах, определить максимальную скорость реакции. Из этого графика можно также извлечь ценную информацию, касающуюся ингибирования фермента.

Существуют и другие способы преобразования уравнения Михаэлиса- Ментен. Графические зависимости используют при изучении влияния различных внешних воздействий на ферментативный процесс.

Данный раздел энзимологии изучает влияние различных факторов на скорость ферментативной реакции. Учитывая общее уравнение ферментативного катализа обратимой реакции превращения одного субстрата в один продукт (1),

следует назвать главные факторы влияния на скорость ферментативной реакции: концентрация субстрата [S], концентрация фермента [E] и концентрация продукта реакции [P].

Взаимодействие некоторых ферментов с их субстратом можно описать гиперболической кривой зависимости скорости ферментативной реакции V от концентрации субстрата [S] (рис.19):

Рис.19.Зависимость скорости ферментативной реакции от концентрации субстрата.

На этой кривой можно выделить три участка, которые можно объяснить по положениям механизма взаимодействия фермента с субстратом: ОА – участок прямо пропорциональной зависимости V от [S], происходит постепенное заполнение активных центров фермента молекулами субстрата с образованием неустойчивого комплекса ES; участок АВ - криволинейная зависимость V от [S], полное насыщение активных центров фермента молекулами субстрата еще не достигнуто. Комплекс ES до достижения переходного состояния является нестабильным, вероятность обратной диссоциации до E и S еще велика; участок ВС - зависимость описывается уравнением нулевого порядка, участок параллелен оси [S], достигнуто полное насыщение активных ферментов молекулами субстрата, V=V max .

Характерная форма кривой описывается математически уравнением Бриггса-Холдейна:

V=V max ● [S]/ Km + [S] (2),

где Кm - константа Михаэлиса-Ментен, численно равная концентрации субстрата, при которой скорость ферментативной реакции равна половине V max .

Чем меньше K m фермента, тем выше сродство фермента к субстрату, тем быстрее достигается переходное состояние для субстрата, и он превращается в продукт реакции. Поиск значений Km для каждого из субстратов фермента с групповой специфичностью важен при определении биологической роли этого фермента в клетке.

Для большинства ферментов невозможно построить гиперболическую кривую (рис.19), В таком случае используется метод двойных обратных величин (Лайнуивера-Бэрка), т.е. строится графическая зависимость 1/[V] от 1/[S] (рис.20). Метод построения таких кривых в эксперименте очень удобен при изучении влияния различных типов ингибиторов на активность ферментов (см. по тексту дальше).

Рис.20. График зависимости 1/[V] от 1/[S] (метод Лайнуивера-Бэрка),

где y-отсекаемый участок - , а x – отсекаемый участок - , тангенс угла α - .

Зависимость скорости ферментативной реакции V от концентрации фермента [E].

Данная графическая зависимость (рис.21) рассматривается при оптимальных температуре и рН окружающей среды, при концентрациях субстрата, значительно превышающих концентрацию насыщения активных центров фермента.

Рис. 21. Влияние концентрации фермента на скорость ферментативной реакции.

Зависимость скорости ферментативной реакции от концентрации кофактора или кофермента. Для сложных ферментов, следует учитывать, что дефицит коферментных форм витаминов при гиповитаминозах, нарушение поступления в организм ионов металлов обязательно приводят к уменьшению концентрации соответствующих ферментов, необходимых для течения процессов обмена веществ. Поэтому следует сделать вывод о прямой зависимости активности фермента от концентрации кофактора или кофермента.

Влияние концентрации продуктов на скорость ферментативной реакции. Для обратимых реакций, протекающих в организме человека, необходимо учитывать, что продукты прямой реакции могут быть использованы ферментом в качестве субстратов обратной реакции. Поэтому направление течения и момент достижения V max являются зависимыми от соотношения концентраций исходных субстратов и продуктов реакции. Так, например, активность аланинаминотрасферазы, катализирующей превращение:

Аланин + Альфа-кетоглутарат ↔ Пируват + Глутамат

зависит в клетке от соотношения концентраций:

[аланин + альфа-кетоглутарат] / [пируват+глутамат].

МЕХАНИЗМ ДЕЙСТВИЯ ФЕРМЕНТОВ. ТЕОРИИ ФЕРМЕНТАТИВНОГО КАТАЛИЗА

Ферменты, как и небелковые катализаторы, увеличивают скорость химической реакции по причине способности снижать энергию активации этой реакции. Энергия активации ферментативной реакции рассчитывается как разность между значением энергии в системе протекающей реакции достигшей переходного состояния и энергией, определяемой в начале реакции (см. графическую зависимость рис. 22).

Рис. 22. Графическая зависимость энергетического состояния химической реакции без фермента (1) и в присутствии фермента (2) от времени течения реакции.

Работы В. Генри и, в особенности, Л. Михаэлиса, М. Ментен по изучению механизма моносубстратных обратимых ферментативных реакций позволили постулировать, что фермент Е сначала обратимо и относительно быстро соединяется со своим субстратом S c образованием фермент-субстратного комплекса (ЕS):

E + S <=> ES (1)

Образование ЕS происходит за счет водородных связей, электростатических, гидрофобных взаимодействий, в некоторых случаях ковалентных, координационных связей между боковыми радикалами аминокислотных остатков активного центра и функциональными группами субстрата. У сложных ферментов функцию контакта с субстратом может выполнить и небелковая часть структуры.

Фермент-субстратный комплекс затем распадается во второй более медленной обратимой реакции с образованием продукта реакции Р и свободного фермента Е:

ES <=> EР <=>E + P (2)

В настоящее время, благодаря работам выше названных ученых, а также Кейлина Д., Чанса Б., Кошленда Д. (теория «индуцированного соответствия»), существуют теоретические положения о четырёх основных моментах в механизме действия фермента на субстрат, определяющих способность ферментов ускорять химические реакции:

1. Ориентация и сближение . Фермент способен связывать молекулу субстрата таким образом, что атакуемая ферментом связь оказывается не только расположенной в непосредственной близости от каталитической группы, но и правильно ориентированной по отношению к ней. Вероятность того, что комплекс ES достигнет переходного состояния за счет ориентации и сближения, сильно увеличивается.

2. Напряжение и деформация : индуцированное соответствие. Присоединение субстрата может вызывать конформационные изменения в молекуле фермента, которые приводят к напряжению структуры активного центра, а также несколько деформируют связанный субстрат, облегчая тем самым достижение комплексом ES переходного состояния. Возникает так называемое индуцированное соответствие между молекулами E и S.


Скорость ферментативных реакций зависит от концентрации фермента, субстрата, температуры, рН, наличия активаторов и ингибиторов.

В условиях избытка субстрата скорость реакции прямо пропорциональна концентрации фермента (рис. 3.2).

Рис. 3.2. Зависимость скорости реакции от концентрации фермента.

Зависимость скорости реакции от концентрации субстрата представлена на рисунке 3.3.

Рис. 3.3. Зависимость скорости реакции от концентрации субстрата.

На графике выделяют 3 участка. При низкой концентрации субстрата (участок а ) скорость реакции прямо пропорциональна концентрации субстрата и подчиняется кинетике первого порядка. На участке b (реакция смешанного порядка) эта зависимость нарушается. На участке c скорость реакции максимальна и не зависит от концентрации субстрата.

Ферментативная реакция характеризуется формированием фермент-субстратного комплекса , который распадается с образованием свободного фермента и продукта реакции.

В этом уравнении k 1 – константа скорости образования фермент-субстратного комплекса, k 2 – константа диссоциации фермент-субстратного комплекса с образованием свободного фермента и субстрата и k 3 – константа скорости диссоциации фермент-субстратного комплекса до свободного фермента и продукта реакции.

Михаэлис и Ментен предложили уравнение, которое описывает зависимость скорости реакции от концентрации субстрата.

v – скорость реакции при данной концентрации субстрата; Ks – константа диссоциации фермент-субстратного комплекса; Vmax – максимальная скорость реакции.

Ks=k -2 /k 1 т.е. отношение константы обратной реакции к константе прямой реакции.

Однако данное уравнение описывает только участок а на графике и не учитывает влияния на скорость ферментативного процесса продуктов реакции.

Холдейн и Бриггс заменили в уравнении константу диссоциации на константу Михаэлиса (Кm).

Константа Михаэлиса численно равна концентрации субстрата , при которой скорость реакции равна половине максимальной. Константа Михаэлиса характеризует сродство фермента и субстрата. Высокое сродство фермента к субстрату характеризуется низкой величиной Кm и наоборот.

Использование графика, предложенного Михаэлисом и Ментен неудобно. Для более удобного графического представления Г.Лайнуивер и Д.Бэрк преобразовали уравнение Холдейна и Бриггса по методу двойных обратных величин, исходя из того принципа, что если существует равенство между двумя величинами, то и обратные величины также будут равны.

Графическое изображение зависимости скорости реакции от рН имеет колоколообразную форму. Значение рН, при котором фермент проявляет максимальную активность, называется оптимумом рН (рис. 5.4 А). Для большинства ферментов оптимум рН равен 6-8. Исключение составляет пепсин, оптимум которого равен 2,0. При изменении рН в ту или другую сторону от оптимума скорость реакции уменьшается, вследствие ионизации функциональных групп фермента и субстрата, что нарушает образование фермент-субстратного комплекса.

Рис. 3.4. Зависимость скорости реакции от рН (А) и температуры (Б).

Скорость химической реакции повышается в 2 раза при повышении температуры на 10°С. Однако вследствие белковой природы фермента при дальнейшем повышении температуры наступает денатурация фермента. Температура, при которой скорость реакции максимальна, называется температурным оптимумом (рис. 3.4. Б). Для большинства ферментов оптимум температуры составляет 37-40°С. Исключение составляет миокиназа мышц, которая выдерживает нагревание до 100°С.

Активаторы ферментов – это вещества 1) формирующие активный центр фер­мента (Co 2+ ,Mg 2+ , Zn 2+ , Fe 2+ , Са 2+); 2) облегчающие образование фермент-суб­стратного комплекса (Мg 2+); 3) восстанавливающие SH-группы (глутатион, цисте­ин, меркаптоэтанол); 4) стабилизирующие нативную структуру белка-фермента. Активируют ферментативные реакции обычно катионы (в таблице Менделеева с 19 по 30). Анионы менее активны, хотя ионы хлора и анионы некоторых других галогенов могут активировать пепсин, амилазу, аденилатциклазу. Активаторами могут быть белки: апопротеин А-I (ЛХАТ), апопротеин С-II (ЛПЛ).

Механизм действия активаторов:

1) участвуют в формировании активного центра ферментов;

2) облегчают связывание субстрата и фермента;

3) участвуют в формировании нативной структуры фермента.

Ингибиторы – вещества, вызывающие частичное или полное торможение реакций, катализируемых ферментами.

Ингибиторы классифицируются на неспецифические и специфические . Действие неспецифических ингибиторов не связано с механизмом действия ферментов. Эти ингибиторы вызывают денатурацию белка-фермента (нагревание, кислоты, щелочи, соли тяжелых металлов и др.).

Специфические ингибиторы влияют на механизм действия ферментов. Специфические ингибиторы делятся на 2 группы: обратимые и необратимые . Необратимые ингибиторы вызывают стойкое необратимое изменение или модификацию функциональных групп фермента путем прочного или ковалентного связывания. К этой группе относятся: 1) ингибиторы металлосодержащих ферментов (HCN, RCN, HF, CO и др.). Эти соединения связываются с металлами с переменной валентностью (Cu или Fe), в результате чего нарушается процесс переноса электронов по дыхательной цепи ферментов. Поэтому эти ингибиторы называются дыхательными ядами. 2) ингибиторы ферментов, содержащих SH-группы (монойодацетат, дийодацетат, йодацетамид, соединения мышьяка и ртути). 3) ингибиторы ферментов, содержащих ОН-группу в активном центре (фосфороорганические соединения, инсектициды). Эти ингибиторы тормозят, прежде всего, активность холинэстеразы – фермента, играющего первостепенную роль в деятельности нервной системы.

Обратимое ингибирование поддается количественному изучению на основе уравнения Михаэлиса-Ментен. Обратимые ингибиторы делятся на конкурентные и неконкурентные .

Конкурентные ингибиторы – это вещества по структуре похожие на субстрат. Ингибитор связывается с активным центром фермента и препятствует образованию фермент-субстратного комплекса.

Классическим примером конкурентного ингибирования является торможение сукцинатдегидрогеназы малоновой кислотой. Сукцинатдегидрогеназа катализирует окисление янтарной кислоты (сукцината) путем дегидрирования в фумаровую кислоту.

Если в среду добавить малоновую кислоту (ингибитор), то в результате структурного сходства с истинным субстратом сукцинатом он будет реагировать с активным центром с образованием фермент-ингибиторного комплекса, однако реакция происходить не будет.

Действие ингибитора устраняется путем увеличения концентрации субстрата . При конкурентном ингибировании изменяется кинетика ферментативных реакций: увеличивается Кm, V max остается постоянной (рис. 3.5).

Рис. 3.5. Влияние конкурентных ингибиторов на скорость ферментативной реакции

Метод конкурентного ингибирования нашел применение в медицинской практике, в качестве антиметаболитов .

Например, для лечения некоторых инфекционных заболеваний, вызываемых бактериями, применяют сульфаниламидные препараты. Эти препараты имеют структурное сходство с парааминобензойной кислотой, которую бактериальная клетка использует для синтеза фолиевой кислоты, необходимой для жизнедеятельности бактерий. Благодаря этому структурному сходству сульфаниламид блокирует действие фермента путем вытеснения парааминобензойной кислоты из комплекса с ферментом, синтезирующим фолиевую кислоту.

Неконкурентные ингибиторы – вещества, не имеющие структурного сходства с субстратами. Неконкурентные ингибиторы связываются не с активным центром, а в другом месте молекулы фермента, например, в аллостерическом центре. Это изменяет конформацию активного центра таким образом, что нарушается взаимодействие с ним субстрата.

При неконкурентном ингибировании: V max уменьшается, а K m не изменяется (рис. 3.6).