Средняя теплоемкость газа в интервале температур от т1 до т2. Истинная и средняя теплоемкости Определить среднюю теплоемкость в интервале температур

Учитывая, что теплоемкость непостоянна, а зависит от температуры и других термических параметров, различают истинную и среднюю теплоемкости. Истинная теплоемкость выражается уравнением (2.2) при определенных параметрах термодинамического процесса, то есть в данном состоянии рабочего тела. В частности, если хотят подчеркнуть зависимость теплоёмкости рабочего тела от температуры, то записывают её как , а удельную – как. Обычно под истинной теплоёмкостью понимают отношение элементарного количества теплоты, которое сообщается термодинамической системе в каком-либо процессе к бесконечно малому приращению температуры этой системы, вызванному сообщенной теплотой. Будем считатьистинной теплоёмкостью термодинамической системы при температуре системы равной, а- истинной удельной теплоёмкостью рабочего тела при его температуре равной. Тогда среднюю удельную теплоёмкость рабочего тела при изменении его температуры отдоможно определить как

Обычно в таблицах приводятся средние значения теплоемкости для различных интервалов температур, начинающихся с. Поэтому во всех случаях, когда термодинамический процесс проходит в интервале температур отдо, в котором, количество удельной теплотыпроцесса определяется с использованием табличных значений средних теплоемкостейследующим образом:

.

Значения средних теплоемкостей и, находят по таблицам.

2.3.Теплоёмкости при постоянном объёме и давлении

Особый интерес представляют средние и истинные теплоемкости в процессах при постоянном объеме (изохорная теплоемкость , равная отношению удельного количества теплоты в изохорном процессе к изменению температуры рабочего тела dT) и при постоянном давлении(изобарная теплоемкость , равная отношению удельного количества теплоты в изобарном процессе к изменению температуры рабочего тела dT).

Для идеальных газов связь между изобарной и изохорной теплоёмкостями и устанавливается известным уравнением Майера .

Из уравнения Майера следует, что изобарная теплоемкость больше изохорной на значение удельной характеристической постоянной идеального газа. Это объясняется тем, что в изохорном процессе () внешняя работа не выполняется и теплота расходуется только на изменение внутренней энергии рабочего тела, тогда как в изобарном процессе () теплота расходуется не только на изменение внутренней энергии рабочего тела, зависящей от его температуры, но и на совершение им внешней работы.

Для реальных газов , так как при их расширении исовершается работа не только против внешних сил, но и внутренняя работа против сил взаимодействия между молекулами газа, на что дополнительно расходуется теплота.

В теплотехнике широко применяется отношение теплоемкостей , которое носит название коэффициента Пуассона (показателя адиабаты). В табл. 2.1 приведены значениянекоторых газов, полученные экспериментально при температуре 15 °С.

Теплоемкости изависят от температуры, следовательно, и показатель адиабатыдолжен зависеть от температуры.

Известно, что с повышением температуры теплоёмкость увеличивается. Поэтому с ростом температурыуменьшается, приближаясь к единице. Однако всегда остается больше единицы. Обычно зависимость показателя адиабаты от температуры выражается формулой вида

и так как

Совершенство тепловых процессов, происходящих в цилиндре реального автомобильного двигателя, оценивают по индикаторным показателям его действительного цикла, совершенство же двигателя в целом, с учетом потерь мощности на трение и привод вспомогательных механизмов, - по его эффективным показателям.

Работа, совершаемая газами в цилиндрах двигателя, называется индикаторной работой. Индикаторная работа газов в одном цилиндре за один цикл называется работой цикла. Она может быть определена с помощью индикаторной диаграммы, построенной по данным теплового расчета двигателя

Площадь, ограниченная контуром a-c-z"-z-b-a расчетной индикаторной диаграммы А т, будет в соответствующем масштабе представлять теоретическую индикаторную работу газов в одном цилиндре за цикл. Площадь действительной диаграммы а"-c"-c"-z"-b"-b"-r-a-a" будет состоять из верхней и нижней петель. Площадь А д верхней петли характеризует положительную работу газов за цикл. Границы этой петли не совпадают с расчетными вследствие опережения зажигания или впрыска топлива (с"-с-с"-с"), немгновенного сгорания топлива (с"-z"-z"-с" и z"-z-z" "-z") и предварения выпуска (b"-b-b"-b").

Уменьшение площади расчетной диаграммы по указанным причинам учитывается с помощьюкоэффициента полноты диаграммы :

Для автотракторных двигателей значения коэффициета полноты диаграммы принимают значения 0,93...0,97.

Площадь Ан нижней петли характеризует отрицательную работу затрачиваемую на насосные ходы поршня для газообмена в цилиндре. Таким образом, действительная индикаторная работа газов в одном цилиндре за один цикл:

На практике величину работоспособности двигателя за цикл определяют по среднему индикаторному давлению Pi, равному полезной работе цикла, отнесенной к единице рабочего объема цилиндра

Где Wi - полезная работа цикла, Дж(Н м); Vh – рабочий объем цилиндра, м3.

Среднее индикаторное давление - это условно постоянное давление на поршень в течение одного хода поршня, которое совершает работу, равную индикаторной работе газов за весь цикл. Это давление в некотором масштабе выражается высотой pi прямоугольника с площадью А = Ад - Ан и с основанием, равным длине индикаторной диаграммы. Величина pi при нормальном режиме работы двигателя достигает в, бензиновых двигателях 1,2 МПа, в дизелях - 1,0 МПа.

Полезную работу, совершаемую газами в цилиндрах двигателя в единицу времени, называют индикаторной мощностью и обозначают Pi .
Индикаторная работа газов в одном цилиндре за один цикл составляет (Нм)

Различают теплоемкость среднюю и истинную . Средней теплоемкостью с„, называют количество теплоты, которое расходуется при нагревании единицы газа (1 кг, 1 м3, 1 моль) на 1 К от t1 до t2:
с=q/(t2-t1)
Чем меньше разность температур t2 – t1, тем больше значение средней теплоемкости приближается к истинной с. Следовательно, истинная теплоемкость будет иметь место при значении t2 – t1 приближающемся к нулю.



Теплоемкость является функцией параметров состояния – давления и температуры, поэтому в технической термодинамике различают истинную и среднюю теплоемкости.

Теплоемкость идеального газа зависит только от температуры и по определению может быть найдена лишь в интервале температур . Однако всегда можно предположить, что этот интервал очень мал вблизи какого-либо значения температуры. Тогда можно сказать, что теплоемкость определена при данной температуре. Такая теплоемкость называется истинной.

В справочной литературе зависимость истинных теплоемкостей с р и с v от температуры задают в виде таблиц и аналитических зависимостей. Аналитическую зависимость (например, для массовой теплоемкости) обычно представляют в виде полинома:

Тогда количество подведенной в процессе теплоты в интервале температур [t 1 ,t 2 ] определяется интегралом:

При исследовании термодинамических процессов часто определяют среднее в интервале температур значение теплоемкости. Она представляет собой отношение количества подведенной в процессе теплоты Q 12 к конечной разности температур:

Тогда, если задана зависимость истинной теплоемкости от температуры, в соответствии с (2):

Часто в справочной литературе приводят значения средних теплоемкостей с р и с v для интервала температур от 0 до t о С . Как и истинные, их представляют в виде таблиц и функций:

При подстановке значения температуры t в эту формулу будет найдена средняя теплоемкость в интервале температур [0,t ]. Чтобы найти среднее значение теплоемкости в произвольном интервале [t 1 ,t 2 ], пользуясь зависимостью (4), нужно найти количество теплоты Q 12 , подведенной к системе в этом интервале температур. На основании известного из математики правила интеграл в уравнении (2) может быть разбит на следующие интегралы:

После этого искомое значение средней теплоемкости находят по формуле (3).

– это количество теплоты, подведенное к 1 кг вещества при изменении его температуры от Т 1 до Т 2 .

1.5.2. Теплоемкость газов

Теплоемкость газов зависит от:

    типа термодинамического процесса (изохорный, изобарный, изотермический и др.);

    рода газа, т.е. от числа атомов в молекуле;

    параметров состояния газа (давления, температуры и др.).

А) Влияние типа термодинамического процесса на теплоемкость газа

Количество теплоты, необходимое для нагревания одного и того же количества газа в одном и том же диапазоне температур, зависит от типа термодинамического процесса, совершаемого газом.

В изохорном процессе (υ = const) теплота тратится лишь на нагрев газа на величину. Газ не расширяется в замкнутом сосуде (рис. 1.2а ), поэтому и не совершает работу. Теплоемкость газа в изохорном процессе обозначается символом с υ .

В изобарном процессе (р = const) теплота тратится не только на нагрев газа на ту же величину, что и в изохорном процессе, но и на совершение им работыпри поднятии поршня с площадьюна величину(рис. 1.2б ). Теплоемкость газа в изобарном процессе обозначается символом с р .

Так как по условию в обоих процессах величина одинакова, то в изобарном процессе за счет совершения газом работывеличина. Поэтому в изобарном процессе теплоемкостьс р с υ .

В соответствии с формулой Майера для идеального газа

или . (1.6)

Б) Влияние рода газа на его теплоемкость Из молекулярно-кинетической теории идеального газа известно, что

где – число поступательных и вращательных степеней свободы движения молекул данного газа. Тогда

, а . (1.7)

Одноатомный газ имеет три поступательных степени свободы движения молекулы (рис.1.3а ), т.е. .

Двухатомный газ имеет три поступательных степени свободы движения и две степени свободы вращательного движения молекулы (рис. 1.3б ), т.е. . Аналогично можно показать, что для трехатомного газа.

Таким образом, мольная теплоемкость газов зависит от числа степеней свободы движения молекул, т.е. от числа атомов в молекуле , а удельная теплоемкость зависит также от молекулярной массы, т.к. от неё зависит значение газовой постоянной, которая различна для разных газов.

В) Влияние параметров состояния газа на его теплоемкость

Теплоемкость идеального газа зависит только от температуры и увеличивается при увеличении Т .

Одноатомные газы представляют исключение, т.к. их теплоемкость практически не зависит от температуры.

Классическая молекулярно-кинетическая теория газов позволяет довольно точно определить теплоемкости одноатомных идеальных газов в широком диапазоне температур и теплоемкости многих двухатомных (и даже трехатомных) газов при невысоких температурах.

Но при температурах, существенно отличных от 0 о С, экспериментальные значения теплоемкости двух- и многоатомных газов оказываются значительно отличающимися от предсказанных молекулярно-кинетической теорией.

На рис. 1.4 приведена зависимость молярных теплоемкостей водорода и гелия при постоянном объеме с v  от абсолютной температуры Т в широком диапазоне её изменения. Как видно, значения теплоемкости для двухатомного газа (и многоатомных газов) могут существенно зависеть от температуры. Это объясняется тем, что при низких температурах вращательные степени свободы не возбуждаются, и поэтому молярная теплоемкость двухатомного (и многоатомного) газа оказывается такой же, как и у одноатомного (у водорода такой же, как у гелия). При высоких же температурах у двух- и многоатомных газов возбуждаются еще и степени свободы, связанные с колебаниями атомов в молекулах, что ведет к дополнительному увеличению их теплоемкости.

В теплотехнических расчетах обычно пользуются опытными значениями теплоемкости газов, представленными в виде таблиц. При этом теплоемкость, определенная в опыте (при данной температуре), называется истинной теплоемкостью. А если в опыте измерялось количество теплоты q , которое было затрачено на существенное повышение температуры 1 кг газа от некоторой температуры T 0 до температуры T , т.е. на Т = Т T 0 , то отношение

называется средней теплоемкостью газа в данном интервале температур.

Обычно в справочных таблицах значения средней теплоемкости даются при значении T 0 , соответствующем нулю градусов Цельсия.

Теплоемкость реального газа зависит, кроме температуры, также и от давления из-за влияния сил межмолекулярного взаимодействия.

Теплоемкость – теплофизическая характеристика, которая определяет способность тел отдавать или воспринимать теплоту, чтобы изменять температуру тела. Отношение количества теплоты, подведенной (или отведенной) в данном процессе, к изменению температуры называется теплоемкостью тела (системы тел):C=dQ/dT, где - элементарное количество теплоты; - элементарное изменение температуры.

Теплоемкость численно равна количеству теплоты, которое необходимо подвести к системе, чтобы при заданных условиях повысить ее температуру на 1 градус. Единицей теплоемкости будет Дж/К.

В зависимости от количественной единицы тела, к которому подводится теплота в термодинамике, различают массовую, объемную и мольную теплоемкости.

Массовая теплоемкость - это теплоемкость, отнесенная к единице массы рабочего тела,c=C/m

Единицей измерения массовой теплоемкости является Дж/(кг×К). Массовую теплоемкость называют также удельной теплоемкостью.

Объемная теплоемкость - теплоемкость, отнесенная к единице объема рабочего тела, где и - объем и плотность тела при нормальных физических условиях. C’=c/V=c p . Объемная теплоемкость измеряется в Дж/(м 3 ×К).

Мольная теплоемкость - теплоемкость, отнесенная к количеству рабочего тела (газа) в молях,C m =C/n, где n - количество газа в молях.

Мольную теплоемкость измеряют в Дж/(моль×К).

Массовая и мольная теплоемкости связаны следующим соотношением:

Объемная теплоемкость газов выражается через мольную как

Где м 3 /моль - мольный объем газа при нормальных условиях.

Уравнение Майера: С р – С v = R.

Учитывая, что теплоемкость непостоянна, а зависит от температуры и других термических параметров, различают истинную и среднюю теплоемкости. В частности, если хотят подчеркнуть зависимость теплоёмкости рабочего тела от температуры, то записывают её как C(t), а удельную – как c(t). Обычно под истинной теплоёмкостью понимают отношение элементарного количества теплоты, которое сообщается термодинамической системе в каком-либо процессе к бесконечно малому приращению температуры этой системы, вызванному сообщенной теплотой. Будем считать C(t) истинной теплоёмкостью термодинамической системы при температуре системы равной t 1 , а c(t) - истинной удельной теплоёмкостью рабочего тела при его температуре равной t 2 . Тогда среднюю удельную теплоёмкость рабочего тела при изменении его температуры от t 1 до t 2 можно определить как



Обычно в таблицах приводятся средние значения теплоемкости c ср для различных интервалов температур, начинающихся с t 1 =0 0 C. Поэтому во всех случаях, когда термодинамический процесс проходит в интервале температур от t 1 до t 2 , в котором t 1 ≠0, количество удельной теплоты q процесса определяется с использованием табличных значений средних теплоемкостей c ср следующим образом.

Теплоемкостью называется отношение количества сообщенного системе тепла к наблюдаемому при этом повышению температуры (при отсутствии химической реакции, перехода вещества из одного агрегатного состояния в другое и при А " = 0.)

Теплоемкость обычно рассчитывают на 1 г массы, тогда ее называют удельной (Дж/г*К), или на 1 моль (Дж/моль*К), тогда ее называют молярной.

Различают среднюю и истинную теплоемкости.

Средней теплоемкостью называют теплоемкость в интервале температур, т. е. отношение тепла, сообщенного телу к приращению его температуры на величину ΔТ

Истинной теплоемкостью тела называют отношение бесконечно малого количества теплоты, полученного телом, к соответствующему приращению его температуры.

Между средней и истинной теплоемкостью легко установить связь:

подставив значения Q в выражение для средней теплоемкости, имеем:

Истинная теплоемкость зависит от природы вещества, температуры и условий, при которых происходит переход тепла к системе.

Так, если система заключена в постоянный объем, т. е. для изохорного процесса имеем:

Если же система расширяется или сжимается, а давление остается постоянным, т.е. для изобарного процесса имеем:

Но ΔQ V = dU, а ΔQ P = dH поэтому

C V = (∂U/∂T) v , а С P = (∂H/∂T) p

(если одна или несколько переменных поддерживаются постоянными, в то время как другие изменяются, то производные называются частными по отношению к изменяющейся переменной).

Оба соотношения справедливы для любых веществ и любых агрегатных состояний. Чтобы показать связь между С V и С P , надо продифференцировать по температуре выражение для энтальпии Н=U+pV /

Для идеального газа рV=nRT

для одного моля или

Разность R представляет собой работу изобарного расширения 1 моля идеального газа при повышении температуры на единицу.

У жидкостей и твердых тел вследствие малого изменения объема при нагревании С P = С V

Зависимость теплового эффекта химической реакции от температуры, уравнения Кирхгофа.

Используя закон Гесса, можно вычислить тепловой эффект реакции при той температуре (обычно это 298К), при которой измерены стандартные теплоты образования или сгорания всех участников реакции.

Но чаще бывает необходимо знать тепловой эффект реакции при различных температурах.

Рассмотрим реакцию:

ν A А+ν B В= ν C С+ν D D

Обозначим через Н энтальпию участника реакции, отнесенную к 1 молю. Общее изменение энтальпии ΔΗ(Т) реакции выразится равнением:

ΔΗ = (ν C Н С +ν D Н D) - (ν A Н А +ν B Н В); va, vb, vc, vd - стехиометрические коэф. х.р.

Если реакция протекает при постоянном давлении, то изменение энтальпии будет равно тепловому эффекту реакции. И если мы продифференцируем это уравнение по температуре, то получим:

Уравнения для изобарного и изохорного процесса

и

называют уравнениями Кирхгофа (в дифференциальной форме). Они позволяют качественно оценить зависимость теплового эффекта от температуры.

Влияние температуры на тепловой эффект обусловливается знаком величины ΔС p (или ΔС V)

При ΔС p > 0 величина , то есть с увеличением температуры тепловой эффект возрастает,

при ΔС p < 0 то есть с увеличением температуры тепловой эффект уменьшается.

при ΔС p = 0 - тепловой эффект реакции не зависит от температуры

То есть, как из этого следует, ΔС p определяет знак перед ΔН.