Kaip išmokti spręsti aritmetinę progresiją. Algebra: aritmetinė ir geometrinė progresija. Aritmetinės progresijos suma


Pavyzdžiui, seka \(2\); \(5\); \(8\); \(vienuolika\); \(14\)... yra aritmetinė progresija, nes kiekvienas paskesnis elementas nuo ankstesnio skiriasi trimis (galima gauti iš ankstesnio pridedant tris):

Šioje progresijoje skirtumas \(d\) yra teigiamas (lygus \(3\)), todėl kiekvienas kitas narys yra didesnis nei ankstesnis. Tokios progresijos vadinamos didėja.

Tačiau \(d\) taip pat gali būti neigiamas skaičius. Pavyzdžiui, aritmetine progresija \(16\); \(10\); \(4\); \(-2\); \(-8\)... progresijos skirtumas \(d\) yra lygus minus šeši.

Ir šiuo atveju kiekvienas kitas elementas bus mažesnis nei ankstesnis. Šios progresijos vadinamos mažėja.

Aritmetinės progresijos žymėjimas

Pažanga nurodoma maža lotyniška raide.

Skaičiai, kurie sudaro progresiją, vadinami nariai(arba elementai).

Jie žymimi ta pačia raide kaip aritmetinė progresija, bet su skaitine indeksu, lygiu elemento skaičiui.

Pavyzdžiui, aritmetinė progresija \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) susideda iš elementų \(a_1=2\); \(a_2=5\); \(a_3=8\) ir pan.

Kitaip tariant, progresijai \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Aritmetinės progresijos uždavinių sprendimas

Iš esmės aukščiau pateiktos informacijos jau pakanka beveik bet kokiai aritmetinės progresijos problemai išspręsti (įskaitant ir OGE siūlomas).

Pavyzdys (OGE). Aritmetinė progresija pateiktos sąlygos \(b_1=7; d=4\). Raskite \(b_5\).
Sprendimas:

Atsakymas: \(b_5=23\)

Pavyzdys (OGE). Pateikiami pirmieji trys aritmetinės progresijos nariai: \(62; 49; 36…\) Raskite šios progresijos pirmojo neigiamo nario reikšmę.
Sprendimas:

Mums pateikiami pirmieji sekos elementai ir žinome, kad tai yra aritmetinė progresija. Tai reiškia, kad kiekvienas elementas skiriasi nuo savo kaimyno tuo pačiu skaičiumi. Sužinokime, kuris iš kito elemento atimdamas ankstesnįjį: \(d=49-62=-13\).

Dabar galime atkurti savo progresą iki (pirmojo neigiamo) elemento, kurio mums reikia.

Paruošta. Galite parašyti atsakymą.

Atsakymas: \(-3\)

Pavyzdys (OGE). Duoti keli iš eilės aritmetinės progresijos elementai: \(…5; x; 10; 12,5...\) Raskite elemento, pažymėto raide \(x\), reikšmę.
Sprendimas:


Norėdami rasti \(x\), turime žinoti, kiek kitas elementas skiriasi nuo ankstesnio, kitaip tariant, progresijos skirtumą. Raskime jį iš dviejų žinomų gretimų elementų: \(d=12.5-10=2.5\).

Ir dabar galime nesunkiai rasti tai, ko ieškome: \(x=5+2.5=7.5\).


Paruošta. Galite parašyti atsakymą.

Atsakymas: \(7,5\).

Pavyzdys (OGE). Aritmetinė progresija apibrėžiama šiomis sąlygomis: \(a_1=-11\); \(a_(n+1)=a_n+5\) Raskite pirmųjų šešių šios progresijos narių sumą.
Sprendimas:

Turime rasti pirmųjų šešių progresijos narių sumą. Bet mes nežinome jų reikšmių, mums duotas tik pirmasis elementas. Todėl pirmiausia apskaičiuojame reikšmes po vieną, naudodamiesi tuo, kas mums duota:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
Ir apskaičiavę šešis mums reikalingus elementus, randame jų sumą.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Reikalinga suma rasta.

Atsakymas: \(S_6=9\).

Pavyzdys (OGE). Aritmetine progresija \(a_(12)=23\); \(a_(16)=51\). Raskite šios progresijos skirtumą.
Sprendimas:

Atsakymas: \(d=7\).

Svarbios aritmetinės progresijos formulės

Kaip matote, daugelį aritmetinės progresijos problemų galima išspręsti tiesiog supratus pagrindinį dalyką - kad aritmetinė progresija yra skaičių grandinė, o kiekvienas paskesnis šios grandinės elementas gaunamas pridedant tą patį skaičių prie ankstesnio ( progresavimo skirtumas).

Tačiau kartais būna situacijų, kai apsispręsti „prieš akis“ yra labai nepatogu. Pavyzdžiui, įsivaizduokite, kad pačiame pirmame pavyzdyje turime rasti ne penktą elementą \(b_5\), o tris šimtus aštuoniasdešimt šeštąjį \(b_(386)\). Ar turėtume pridėti keturis \(385\) kartus? Arba įsivaizduokite, kad priešpaskutiniame pavyzdyje reikia rasti pirmųjų septyniasdešimt trijų elementų sumą. Pavargsite skaičiuoti...

Todėl tokiais atvejais jie nesprendžia dalykų „priešais“, o naudoja specialias aritmetinei progresijai išvestas formules. O pagrindinės yra progresijos n-ojo nario formulė ir \(n\) pirmųjų narių sumos formulė.

\(n\)-ojo nario formulė: \(a_n=a_1+(n-1)d\), kur \(a_1\) yra pirmasis progresijos narys;
\(n\) – reikiamo elemento numeris;
\(a_n\) – progresijos su skaičiumi \(n\) terminas.


Ši formulė leidžia greitai rasti net trijų šimtųjų ar milijonų elementą, žinant tik pirmąjį ir progresijos skirtumą.

Pavyzdys. Aritmetinė progresija nurodoma sąlygomis: \(b_1=-159\); \(d=8,2\). Raskite \(b_(246)\).
Sprendimas:

Atsakymas: \(b_(246)=1850\).

Pirmųjų n terminų sumos formulė: \(S_n=\frac(a_1+a_n)(2) \cdot n\), kur



\(a_n\) – paskutinis sumuojamas terminas;


Pavyzdys (OGE). Aritmetinė progresija nurodoma sąlygomis \(a_n=3,4n-0,6\). Raskite šios progresijos pirmųjų \(25\) narių sumą.
Sprendimas:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

Norėdami apskaičiuoti pirmųjų dvidešimt penkių dėmenų sumą, turime žinoti pirmojo ir dvidešimt penktojo narių vertę.
Mūsų progresija pateikiama pagal n-ojo nario formulę, priklausomai nuo jo skaičiaus (daugiau informacijos žr.). Apskaičiuokime pirmąjį elementą \(n\) pakeisdami vienu.

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Dabar suraskime dvidešimt penktą terminą, vietoj \(n\) pakeisdami dvidešimt penkis.

\(n=25;\) \(a_(25)=3,4·25-0,6=84,4\)

Na, o dabar galime nesunkiai paskaičiuoti reikiamą sumą.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2.8+84.4)(2)\) \(\cdot 25 =\)\(1090\)

Atsakymas paruoštas.

Atsakymas: \(S_(25)=1090\).

Pirmųjų terminų sumai \(n\) galite gauti kitą formulę: tereikia \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) vietoj \(a_n\) pakeiskite jo formulę \(a_n=a_1+(n-1)d\). Mes gauname:

Pirmųjų n terminų sumos formulė: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), kur

\(S_n\) – reikiama \(n\) pirmųjų elementų suma;
\(a_1\) – pirmasis sumuojamas terminas;
\(d\) – progresijos skirtumas;
\(n\) – elementų skaičius sumoje.

Pavyzdys. Raskite aritmetinės progresijos pirmųjų \(33\)-ex narių sumą: \(17\); \(15,5\); \(14\)…
Sprendimas:

Atsakymas: \(S_(33)=-231\).

Sudėtingesnės aritmetinės progresijos problemos

Dabar jūs turite viską reikalinga informacija beveik bet kokiai aritmetinės progresijos problemai išspręsti. Užbaikime temą apsvarstydami uždavinius, kuriuose reikia ne tik taikyti formules, bet ir šiek tiek pagalvoti (matematikoje tai gali būti naudinga ☺)

Pavyzdys (OGE). Raskite visų neigiamų progresijos narių sumą: \(-19,3\); \(-19\); \(-18,7\)…
Sprendimas:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Užduotis labai panaši į ankstesnę. Pradedame spręsti tą patį: pirmiausia randame \(d\).

\(d=a_2-a_1=-19-(-19,3)=0,3\)

Dabar sumos formulėje norėčiau pakeisti \(d\)... ir čia išryškėja nedidelis niuansas – mes nežinome \(n\). Kitaip tariant, mes nežinome, kiek terminų reikės pridėti. Kaip sužinoti? Pagalvokim. Mes nustosime pridėti elementų, kai pasieksime pirmąjį teigiamą elementą. Tai yra, jūs turite sužinoti šio elemento numerį. Kaip? Užsirašykime bet kurio aritmetinės progresijos elemento apskaičiavimo formulę: \(a_n=a_1+(n-1)d\) mūsų atveju.

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Mums reikia, kad \(a_n\) būtų didesnis už nulį. Išsiaiškinkime, kas \(n\) tai atsitiks.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Abi nelygybės puses padaliname iš \(0,3\).

\(n-1>\)\(\frac(19.3)(0.3)\)

Perkeliame minus vieną, nepamirštant pakeisti ženklų

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Paskaičiuokime...

\(n>65 333…\)

...ir paaiškėja, kad pirmasis teigiamas elementas turės skaičių \(66\). Atitinkamai, paskutinis neigiamas turi \(n=65\). Tik tuo atveju, patikrinkime tai.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Taigi turime pridėti pirmuosius \(65\) elementus.

\(S_(65)=\) \(\frac(2 \cdot (-19.3)+(65-1)0.3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Atsakymas paruoštas.

Atsakymas: \(S_(65)=-630,5\).

Pavyzdys (OGE). Aritmetinė progresija nurodoma sąlygomis: \(a_1=-33\); \(a_(n+1)=a_n+4\). Raskite sumą nuo \(26\)-ojo iki \(42\) elemento imtinai.
Sprendimas:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

Šioje užduotyje taip pat reikia rasti elementų sumą, bet pradedant ne nuo pirmojo, o nuo \(26\)-osios. Tokiam atvejui formulės neturime. Kaip apsispręsti?
Tai paprasta – norėdami gauti sumą nuo \(26\)-osios iki \(42\)-osios, pirmiausia turite rasti sumą nuo \(1\)-osios iki \(42\)-osios, o tada atimkite iš jo suma nuo pirmos iki \(25\)-osios (žr. paveikslėlį).


Mūsų progresijai \(a_1=-33\) ir skirtumui \(d=4\) (juk prie ankstesnio elemento pridedame keturis, kad rastume kitą). Žinodami tai, randame pirmųjų \(42\)-y elementų sumą.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Dabar pirmųjų \(25\) elementų suma.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Ir galiausiai apskaičiuojame atsakymą.

\(S=S_(42)-S_(25)=2058-375=1683\)

Atsakymas: \(S=1683\).

Aritmetinei progresijai yra dar kelios formulės, kurių šiame straipsnyje nesvarstėme dėl mažo jų praktinio naudingumo. Tačiau jūs galite lengvai juos rasti.

Skaičių sekos sąvoka reiškia, kad kiekvienas natūralusis skaičius atitinka tam tikrą realią reikšmę. Tokia skaičių serija gali būti arba savavališka, arba turėti tam tikras savybes – progresiją. Pastaruoju atveju kiekvienas paskesnis sekos elementas (narys) gali būti apskaičiuojamas naudojant ankstesnįjį.

Aritmetinė progresija yra skaitinių reikšmių seka, kurioje jos gretimi nariai skiriasi vienas nuo kito tuo pačiu skaičiumi (visi serijos elementai, pradedant nuo 2-osios, turi panašią savybę). Šis skaičius – skirtumas tarp ankstesnių ir vėlesnių terminų – yra pastovus ir vadinamas progresijos skirtumu.

Progresavimo skirtumas: apibrėžimas

Apsvarstykite seką, susidedančią iš j reikšmių A = a(1), a(2), a(3), a(4) ... a(j), j priklauso aibei natūraliuosius skaičius N. Aritmetinė progresija pagal jos apibrėžimą yra seka, kurioje a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) ) – a(j-1) = d. Reikšmė d yra norimas šios progresijos skirtumas.

d = a(j) – a(j-1).

Paryškinkite:

  • Didėjanti progresija, tokiu atveju d > 0. Pavyzdys: 4, 8, 12, 16, 20, ...
  • Mažėjanti progresija, tada d< 0. Пример: 18, 13, 8, 3, -2, …

Skirtumų progresija ir savavališki jo elementai

Jei žinomi 2 savavališki progresijos nariai (i-tas, k-asis), tada skirtumą tam tikrai sekai galima nustatyti remiantis ryšiu:

a(i) = a(k) + (i – k)*d, o tai reiškia d = (a(i) – a(k))/(i-k).

Progresavimo skirtumas ir pirmasis jo terminas

Ši išraiška padės nustatyti nežinomą reikšmę tik tais atvejais, kai žinomas sekos elemento numeris.

Progresavimo skirtumas ir jo suma

Progresijos suma yra jos sąlygų suma. Norėdami apskaičiuoti bendrą pirmųjų j elementų vertę, naudokite atitinkamą formulę:

S(j) =((a(1) + a(j))/2)*j, bet kadangi a(j) = a(1) + d(j – 1), tada S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=(( 2a(1) + d(–1))/2)*j.

Matematika turi savo grožį, kaip ir tapyba ir poezija.

Rusų mokslininkas, mechanikas N.E. Žukovskis

Labai dažnos užduotys stojamieji egzaminai matematikoje yra problemos, susijusios su aritmetinės progresijos samprata. Norint sėkmingai išspręsti tokias problemas, reikia gerai išmanyti aritmetinės progresijos ypatybes ir turėti tam tikrų jų taikymo įgūdžių.

Pirmiausia prisiminkime pagrindines aritmetinės progresijos savybes ir pateiksime svarbiausias formules, susijusi su šia sąvoka.

Apibrėžimas. Skaičių seka, kuriame kiekvienas paskesnis terminas nuo ankstesnio skiriasi tuo pačiu skaičiumi, vadinama aritmetine progresija. Šiuo atveju skaičiusvadinamas progresijos skirtumu.

Aritmetinei progresijai galioja šios formulės:

, (1)

Kur. Formulė (1) vadinama aritmetinės progresijos bendrojo nario formule, o formulė (2) atspindi pagrindinę aritmetinės progresijos savybę: kiekvienas progresijos narys sutampa su gretimų narių aritmetiniu vidurkiu ir .

Atkreipkite dėmesį, kad būtent dėl ​​šios savybės nagrinėjama progresija vadinama „aritmetine“.

Pirmiau pateiktos (1) ir (2) formulės apibendrinamos taip:

(3)

Norėdami apskaičiuoti sumą Pirmas aritmetinės progresijos nariaidažniausiai naudojama formulė

(5) kur ir .

Jei atsižvelgsime į formulę (1), tada iš (5) formulės išplaukia

Jei pažymime , tada

Kur. Kadangi , (7) ir (8) formulės yra atitinkamų (5) ir (6) formulių apibendrinimas.

Visų pirma, iš (5) formulės išplaukia, Ką

Daugumai studentų mažai žinoma aritmetinės progresijos savybė, suformuluota pagal šią teoremą.

Teorema. Jei tada

Įrodymas. Jei tada

Teorema įrodyta.

Pavyzdžiui , naudojant teoremą, galima tai parodyti

Pereikime prie tipiškų problemų sprendimo pavyzdžių tema „Aritmetinė progresija“.

1 pavyzdys. Tebūnie. Rasti.

Sprendimas. Taikydami formulę (6), gauname . Nuo ir , tada arba .

2 pavyzdys. Tegul jis yra tris kartus didesnis, o padalijus iš koeficiento, rezultatas yra 2, o likusioji dalis yra 8. Nustatykite ir .

Sprendimas. Iš pavyzdžio sąlygų seka lygčių sistema

Kadangi , , ir , tada iš lygčių sistemos (10) gauname

Šios lygčių sistemos sprendimas yra ir .

3 pavyzdys. Raskite, ar ir.

Sprendimas. Pagal (5) formulę turime arba . Tačiau naudojant savybę (9), gauname .

Nuo ir , tada iš lygybės toliau pateikiama lygtis arba .

4 pavyzdys. Raskite, jei.

Sprendimas.Pagal (5) formulę turime

Tačiau naudodami teoremą galime rašyti

Iš čia ir iš (11) formulės gauname .

5 pavyzdys. Duota:. Rasti.

Sprendimas. Nuo tada. Tačiau todėl.

6 pavyzdys. Leiskite , ir . Rasti.

Sprendimas. Naudodami (9) formulę gauname . Todėl, jei , tada arba .

Nuo ir tada čia turime lygčių sistemą

Išspręsdami kurią, gauname ir .

Natūrali lygties šaknis yra .

7 pavyzdys. Raskite, ar ir.

Sprendimas. Kadangi pagal (3) formulę turime, kad , tai lygčių sistema išplaukia iš uždavinio sąlygų

Jei pakeisime išraiškąį antrąją sistemos lygtį, tada gauname arba .

Šaknys kvadratinė lygtis yra Ir .

Panagrinėkime du atvejus.

1. Leiskite , tada . Nuo ir tada .

Šiuo atveju pagal (6) formulę turime

2. Jei , tada , ir

Atsakymas: ir.

8 pavyzdys. Yra žinoma, kad ir. Rasti.

Sprendimas. Atsižvelgdami į formulę (5) ir pavyzdžio sąlygą, rašome ir .

Tai reiškia lygčių sistemą

Jei padauginsime pirmąją sistemos lygtį iš 2 ir pridėsime ją prie antrosios lygties, gausime

Pagal (9) formulę turime. Šiuo atžvilgiu darytina išvada, kad (12) arba .

Nuo ir tada .

Atsakymas:.

9 pavyzdys. Raskite, ar ir .

Sprendimas. Nuo , ir pagal sąlygą , tada arba .

Iš (5) formulės žinoma, Ką . Nuo tada.

Vadinasi, čia turime tiesinių lygčių sistemą

Iš čia gauname ir . Atsižvelgdami į (8) formulę, rašome .

10 pavyzdys. Išspręskite lygtį.

Sprendimas.duota lygtis seka tuo. Tarkime, kad , , ir . Tokiu atveju .

Pagal (1) formulę galime rašyti arba .

Kadangi , tada (13) lygtis turi vienintelę tinkamą šaknį .

11 pavyzdys. Raskite didžiausią reikšmę, jei ir .

Sprendimas. Nuo tada nagrinėjama aritmetinė progresija mažėja. Šiuo atžvilgiu išraiška įgyja didžiausią reikšmę, kai tai yra minimalaus teigiamo progreso nario skaičius.

Naudokime formulę (1) ir faktą, kad ir . Tada gauname tai arba .

Nuo tada arba . Tačiau šioje nelygybėjedidžiausias natūralusis skaičius, Štai kodėl .

Jei ir reikšmės yra pakeistos į (6) formulę, gauname .

Atsakymas:.

12 pavyzdys. Nustatykite visų dviženklių natūraliųjų skaičių sumą, kurią padalijus iš skaičiaus 6, lieka 5.

Sprendimas. Pažymime visų dviženklių natūraliųjų skaičių aibe, t.y. . Toliau sudarysime poaibį, susidedantį iš tų aibės elementų (skaičių), kuriuos padalijus iš skaičiaus 6, gaunama 5 liekana.

Lengva montuoti, Ką . Aišku, kad aibės elementaisudaryti aritmetinę progresiją, kuriame ir .

Norėdami nustatyti aibės kardinalumą (elementų skaičių), darome prielaidą, kad . Kadangi ir , tai išplaukia iš formulės (1) arba . Atsižvelgdami į (5) formulę, gauname .

Aukščiau pateikti problemų sprendimo pavyzdžiai jokiu būdu negali teigti, kad jie yra išsamūs. Šis straipsnis parašytas remiantis analize šiuolaikiniai metodai sprendimus tipinės užduotys tam tikra tema. Norint nuodugniau išnagrinėti su aritmetine progresija susijusių problemų sprendimo metodus, patartina remtis rekomenduojamos literatūros sąrašu.

1. Matematikos uždavinių rinkinys stojantiesiems į kolegijas / Red. M.I. Scanavi. – M.: Taika ir švietimas, 2013. – 608 p.

2. Suprun V.P. Matematika gimnazistams: papildomi skyriai mokyklos mokymo programa. – M.: Lenandas / URSS, 2014. – 216 p.

3. Medynsky M.M. Pilnas elementarios matematikos kursas uždaviniuose ir pratybose. 2 knyga: skaičių sekos ir progresas. – M.: Editus, 2015. – 208 p.

Vis dar turite klausimų?

Norėdami gauti pagalbos iš dėstytojo, užsiregistruokite.

svetainėje, kopijuojant visą medžiagą ar jos dalį, būtina nuoroda į pirminį šaltinį.

Aritmetinės progresijos suma.

Aritmetinės progresijos suma yra paprastas dalykas. Ir prasme, ir formule. Tačiau šia tema yra visokių užduočių. Nuo pagrindinio iki gana tvirto.

Pirmiausia supraskime sumos prasmę ir formulę. Ir tada mes nuspręsime. Savo malonumui.) Sumos reikšmė paprasta kaip moo. Norėdami rasti aritmetinės progresijos sumą, tereikia atidžiai pridėti visus jos terminus. Jei šių terminų nedaug, galite pridėti be jokių formulių. Bet jei daug, ar daug... papildymas erzina.) Tokiu atveju gelbsti formulė.

Sumos formulė paprasta:

Išsiaiškinkime, kokios raidės yra įtrauktos į formulę. Tai daug ką išaiškins.

S n - aritmetinės progresijos suma. Papildymo rezultatas Visi nariai, su Pirmas Autorius paskutinis. Svarbu. Jie tiksliai sumuojasi Visi nariai iš eilės, nepraleidžiant ir nepraleidžiant. Ir, būtent, pradedant nuo Pirmas. Tokiose problemose kaip trečiojo ir aštunto dėmenų sumos arba penkto iki dvidešimto narių sumos radimas, tiesioginis formulės taikymas nuvils.)

a 1 - Pirmas progresijos narys. Čia viskas aišku, viskas paprasta Pirmas eilutės numeris.

a n- paskutinis progresijos narys. Paskutinis serijos numeris. Nelabai pažįstamas pavadinimas, bet pritaikius prie sumos, labai tinka. Tada pamatysite patys.

n - paskutinio nario numeris. Svarbu suprasti, kad formulėje šis skaičius sutampa su pridėtų terminų skaičiumi.

Apibrėžkime sąvoką paskutinis narys a n. Sudėtingas klausimas: kuris narys bus Paskutinis jei duota begalinis aritmetinė progresija?)

Norint atsakyti užtikrintai, reikia suprasti elementarią aritmetinės progresijos prasmę ir... atidžiai perskaityti užduotį!)

Atliekant užduotį rasti aritmetinės progresijos sumą, paskutinis narys visada pasirodo (tiesiogiai arba netiesiogiai), kuris turėtų būti ribojamas. Kitu atveju galutinė, konkreti suma tiesiog neegzistuoja. Sprendimui nesvarbu, ar progresija pateikta: baigtinė ar begalinė. Nesvarbu, kaip jis pateikiamas: skaičių serija ar n-ojo nario formulė.

Svarbiausia suprasti, kad formulė veikia nuo pirmojo progreso nario iki termino su skaičiumi n. Tiesą sakant, visas formulės pavadinimas atrodo taip: aritmetinės progresijos pirmųjų n narių suma.Šių pačių pirmųjų narių skaičius, t.y. n, lemia tik užduotis. Užduotyje visa ši vertinga informacija dažnai yra užšifruota, taip... Bet nesvarbu, toliau pateiktuose pavyzdžiuose atskleidžiame šias paslaptis.)

Užduočių, susijusių su aritmetinės progresijos suma, pavyzdžiai.

Pirmiausia, naudingos informacijos:

Pagrindinis sunkumas atliekant užduotis, susijusias su aritmetinės progresijos suma, yra teisingas formulės elementų nustatymas.

Užduočių autoriai šiuos elementus užšifruoja su beribe fantazija.) Svarbiausia čia nebijoti. Suvokus elementų esmę, pakanka juos tiesiog iššifruoti. Išsamiai pažvelkime į kelis pavyzdžius. Pradėkime nuo užduoties, pagrįstos tikru GIA.

1. Aritmetinė progresija pateikiama sąlyga: a n = 2n-3.5. Raskite pirmųjų 10 jo terminų sumą.

Šaunuolis. Lengva.) Ką turime žinoti, norėdami nustatyti sumą pagal formulę? Pirmasis narys a 1, Paskutinis terminas a n, taip paskutinio nario numeris n.

Kur galiu gauti paskutinio nario numerį? n? Taip, čia pat, su sąlyga! Sakoma: surask sumą pirmieji 10 narių. Na, su kokiu numeriu bus? paskutinis, dešimtas narys?) Nepatikėsite, jo skaičius yra dešimtas!) Todėl vietoj a n pakeisime į formulę a 10, ir vietoj to n- dešimt. Pasikartosiu, paskutinio nario skaičius sutampa su narių skaičiumi.

Belieka nustatyti a 1 Ir a 10. Tai nesunkiai apskaičiuojama naudojant n-ojo nario formulę, kuri pateikta problemos teiginyje. Nežinote, kaip tai padaryti? Dalyvaukite ankstesnėje pamokoje, be šios nėra jokio būdo.

a 1= 2 1 - 3,5 = -1,5

a 10=2·10 - 3,5 =16,5

S n = S 10.

Išsiaiškinome visų aritmetinės progresijos sumos formulės elementų reikšmę. Belieka juos pakeisti ir suskaičiuoti:

Viskas. Atsakymas: 75.

Kita užduotis, pagrįsta GIA. Šiek tiek sudėtingiau:

2. Duota aritmetinė progresija (a n), kurios skirtumas lygus 3,7; a 1 = 2,3. Raskite pirmųjų 15 jo terminų sumą.

Iš karto parašome sumos formulę:

Ši formulė leidžia mums rasti bet kurio termino reikšmę pagal jo skaičių. Ieškome paprasto pakaitalo:

a 15 = 2,3 + (15-1) 3,7 = 54,1

Belieka visus elementus pakeisti aritmetinės progresijos sumos formulėje ir apskaičiuoti atsakymą:

Atsakymas: 423.

Beje, jei sumos formulėje vietoj a n Mes tiesiog pakeičiame formulę n-tuoju nariu ir gauname:

Pateiksime panašius ir gaukime naują aritmetinės progresijos narių sumos formulę:

Kaip matote, čia to nereikia n-asis terminas a n. Kai kuriose problemose ši formulė labai padeda, taip... Galite prisiminti šią formulę. Arba galite tiesiog parodyti jį tinkamu laiku, kaip čia. Juk visada reikia atsiminti sumos formulę ir n-ojo nario formulę.)

Dabar užduotis trumpo šifravimo forma):

3. Raskite visų teigiamų dalykų sumą dviženklius skaičius, trijų kartotiniai.

Oho! Nei pirmas tavo narys, nei paskutinis, nei progresas... Kaip gyventi!?

Teks mąstyti galva ir iš sąlygos ištraukti visus aritmetinės progresijos sumos elementus. Mes žinome, kas yra dviženkliai skaičiai. Jie susideda iš dviejų skaičių.) Koks bus dviženklis skaičius Pirmas? 10, tikriausiai.) A paskutinis dalykas dviženklis skaičius? 99, žinoma! Triženkliai seks paskui jį...

Trijų kartotiniai... Hm... Tai skaičiai, kurie dalijasi iš trijų, štai! Dešimt nesidalija iš trijų, 11 nesidalija... 12... dalijasi! Taigi, kažkas atsiranda. Jau galite užsirašyti seriją pagal problemos sąlygas:

12, 15, 18, 21, ... 96, 99.

Ar ši serija bus aritmetinė progresija? tikrai! Kiekvienas terminas nuo ankstesnio skiriasi griežtai trimis. Jei prie termino pridėsite 2 ar 4, tarkime, rezultatas, t.y. naujas skaičius nebedalinamas iš 3. Iš karto galite nustatyti aritmetinės progresijos skirtumą: d = 3. Tai pravers!)

Taigi, galime saugiai užrašyti kai kuriuos progreso parametrus:

Koks bus skaičius? n paskutinis narys? Kas galvoja, kad 99 – mirtinai klysta... Skaičiai visada eina iš eilės, bet mūsų nariai peršoka per tris. Jie nesutampa.

Čia yra du sprendimai. Vienas iš būdų – itin darbštiems. Galite užsirašyti progresą, visą skaičių seką ir pirštu suskaičiuoti narių skaičių.) Antrasis būdas – mąstantiems. Reikia atsiminti n-ojo termino formulę. Jei pritaikysime formulę savo problemai, pamatysime, kad 99 yra trisdešimtasis progresijos narys. Tie. n = 30.

Pažiūrėkime į aritmetinės progresijos sumos formulę:

Žiūrime ir džiaugiamės.) Iš problemos teiginio ištraukėme viską, ko reikia sumai apskaičiuoti:

a 1= 12.

a 30= 99.

S n = S 30.

Lieka tik elementari aritmetika. Pakeičiame skaičius į formulę ir apskaičiuojame:

Atsakymas: 1665 m

Kitas populiarus galvosūkių tipas:

4. Pateikta aritmetinė progresija:

-21,5; -20; -18,5; -17; ...

Raskite terminų sumą nuo dvidešimties iki trisdešimt keturių.

Žiūrime į sumos formulę ir... susinerviname.) Formulė, priminsiu, apskaičiuoja sumą nuo pirmos narys. Ir užduotyje reikia apskaičiuoti sumą nuo dvidešimties... Formulė neveiks.

Žinoma, galite surašyti visą eigą iš eilės ir pridėti terminus nuo 20 iki 34. Bet... tai kažkaip kvaila ir užtrunka ilgai, tiesa?)

Yra elegantiškesnis sprendimas. Padalinkime seriją į dvi dalis. Pirma dalis bus nuo pirmos kadencijos iki devynioliktos. Antra dalis - nuo dvidešimties iki trisdešimt keturių. Aišku, kad jei paskaičiuotume pirmosios dalies sąlygų sumą S 1-19, pridėkime jį prie antrosios dalies terminų suma S 20-34, gauname progresijos sumą nuo pirmos iki trisdešimt ketvirtosios S 1-34. Kaip šitas:

S 1-19 + S 20-34 = S 1-34

Iš to matome, kad suraskite sumą S 20-34 galima atlikti paprastu atėmimu

S 20-34 = S 1-34 - S 1-19

Svarstomos abi sumos dešinėje pusėje nuo pirmos narys, t.y. standartinė sumos formulė jiems yra gana tinkama. Pradėkime?

Progresavimo parametrus išskiriame iš problemos teiginio:

d = 1,5.

a 1= -21,5.

Norint apskaičiuoti pirmųjų 19 ir pirmųjų 34 terminų sumas, mums reikės 19 ir 34 terminų. Apskaičiuojame juos naudodami n-ojo nario formulę, kaip ir 2 uždavinyje:

a 19= -21,5 +(19-1) 1,5 = 5,5

a 34= -21,5 +(34-1) 1,5 = 28

Nieko nebelieka. Iš 34 terminų sumos atimkite 19 terminų sumą:

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Atsakymas: 262,5

Viena svarbi pastaba! Yra labai naudingas triukas sprendžiant šią problemą. Vietoj tiesioginio skaičiavimo ko jums reikia (S 20-34), suskaičiavome kažkas, kas atrodytų nereikalinga - S 1-19. Ir tada jie nusprendė S 20-34, pašalindami nereikalingus dalykus iš viso rezultato. Toks „apgaudinėjimas su ausimis“ dažnai išgelbsti nuo baisių problemų.)

Šioje pamokoje nagrinėjome uždavinius, kuriems pakanka suprasti aritmetinės progresijos sumos reikšmę. Na, jūs turite žinoti keletą formulių.)

Praktinis patarimas:

Sprendžiant bet kokį uždavinį, susijusį su aritmetinės progresijos suma, rekomenduoju nedelsiant išrašyti dvi pagrindines formules iš šios temos.

N-ojo termino formulė:

Šios formulės iš karto pasakys, ko ieškoti ir kokia kryptimi galvoti, norint išspręsti problemą. Padeda.

O dabar savarankiško sprendimo užduotys.

5. Raskite visų dviženklių skaičių, kurie nesidalija iš trijų, sumą.

Šaunu?) Užuomina paslėpta pastaboje apie 4 uždavinį. Na, 3 uždavinys padės.

6. Aritmetinė progresija pateikiama sąlyga: a 1 = -5,5; a n+1 = a n +0,5. Raskite pirmųjų 24 jo terminų sumą.

Neįprasta?) Tai pasikartojanti formulė. Apie tai galite perskaityti ankstesnėje pamokoje. Neignoruokite nuorodos, tokios problemos dažnai aptinkamos Valstybinėje mokslų akademijoje.

7. Vasja sutaupė pinigų atostogoms. Net 4550 rublių! Ir nusprendžiau savo mylimam žmogui (sau) padovanoti kelias laimės dienas). Gyvenk gražiai, nieko sau neneigdamas. Pirmą dieną išleiskite 500 rublių, o kiekvieną kitą dieną išleiskite 50 rublių daugiau nei praėjusią! Kol baigsis pinigai. Kiek dienų Vasya turėjo laimės?

Ar sunku?) Padės papildoma formulė iš 2 uždavinio.

Atsakymai (netvarkingai): 7, 3240, 6.

Jei jums patinka ši svetainė...

Beje, turiu jums dar keletą įdomių svetainių.)

Galite praktikuotis spręsdami pavyzdžius ir sužinoti savo lygį. Testavimas su momentiniu patvirtinimu. Mokykimės – su susidomėjimu!)

Galite susipažinti su funkcijomis ir išvestinėmis.

Taigi, atsisėskime ir pradėkime rašyti keletą skaičių. Pavyzdžiui:
Galite rašyti bet kokius skaičius, o jų gali būti tiek, kiek norite (mūsų atveju jų yra). Kad ir kiek skaičių berašytume, visada galime atskirti, kuris pirmas, kuris antras ir taip iki paskutinio, tai yra, galime juos sunumeruoti. Tai yra skaičių sekos pavyzdys:

Skaičių seka
Pavyzdžiui, mūsų sekai:

Priskirtas numeris būdingas tik vienam sekos numeriui. Kitaip tariant, sekoje nėra trijų sekundžių skaičių. Antrasis skaičius (kaip ir antrasis) visada yra tas pats.
Skaičius su skaičiumi vadinamas sekos nariu.

Paprastai visą seką vadiname kokia nors raide (pavyzdžiui,), ir kiekvienas šios sekos narys yra ta pati raidė, kurios indeksas lygus šio nario skaičiui: .

Mūsų atveju:

Tarkime, kad turime skaičių seką, kurioje skirtumas tarp gretimų skaičių yra vienodas ir lygus.
Pavyzdžiui:

ir tt
Ši skaičių seka vadinama aritmetine progresija.
Terminą „progresacija“ dar VI amžiuje įvedė romėnų autorius Boethius ir jis buvo suprantamas platesne prasme kaip begalinė skaitinė seka. Pavadinimas „aritmetika“ buvo perkeltas iš ištisinių proporcijų teorijos, kurią tyrinėjo senovės graikai.

Tai skaičių seka, kurios kiekvienas narys yra lygus ankstesniam, pridėtam prie to paties skaičiaus. Šis skaičius vadinamas aritmetinės progresijos skirtumu ir yra žymimas.

Pabandykite nustatyti, kurios skaičių sekos yra aritmetinė progresija, o kurios ne:

a)
b)
c)
d)

Supratau? Palyginkime savo atsakymus:
Is aritmetinė progresija - b, c.
Nėra aritmetinė progresija - a, d.

Grįžkime prie duotosios progresijos () ir pabandykime rasti jos nario reikšmę. Egzistuoja du būdas jį rasti.

1. Metodas

Progresijos skaičių galime pridėti prie ankstesnės reikšmės, kol pasieksime tąjį progresijos narį. Gerai, kad neturime daug ką apibendrinti – tik trys vertybės:

Taigi aprašytos aritmetinės progresijos narys yra lygus.

2. Metodas

Ką daryti, jei mums reikėtų rasti progresijos tosios nario vertę? Sumavimas užtruktų ne vieną valandą, ir tai nėra faktas, kad nesuklystume sudėdami skaičius.
Žinoma, matematikai sugalvojo būdą, kaip nebūtina pridėti aritmetinės progresijos skirtumo prie ankstesnės reikšmės. Atidžiau pažvelkite į nupieštą paveikslėlį... Tikrai jau pastebėjote tam tikrą raštą, būtent:

Pavyzdžiui, pažiūrėkime, iš ko susideda šios aritmetinės progresijos n-ojo nario reikšmė:


Kitaip tariant:

Pabandykite tokiu būdu patys rasti tam tikros aritmetinės progresijos nario vertę.

Ar paskaičiavai? Palyginkite savo užrašus su atsakymu:

Atkreipkite dėmesį, kad gavote lygiai tokį patį skaičių kaip ir ankstesniame metode, kai prie ankstesnės reikšmės nuosekliai pridėjome aritmetinės progresijos terminus.
Pabandykime „nuasmeninti“ šią formulę – įtraukime ją į ją bendra forma ir gauname:

Aritmetinės progresijos lygtis.

Aritmetinė progresija gali didėti arba mažėti.

Didėja- progresija, kurioje kiekviena paskesnė terminų reikšmė yra didesnė už ankstesnę.
Pavyzdžiui:

Mažėjantis- progresija, kurioje kiekviena paskesnė terminų reikšmė yra mažesnė už ankstesnę.
Pavyzdžiui:

Išvestinė formulė naudojama skaičiuojant terminus tiek didėjančiais, tiek mažėjančiais aritmetinės progresijos nariais.
Patikrinkime tai praktiškai.
Pateikiame aritmetinę progresiją, kurią sudaro šie skaičiai: Patikrinkime, koks bus šios aritmetinės progresijos skaičius, jei jį apskaičiuoti naudosime savo formule:


Nuo tada:

Taigi, esame įsitikinę, kad formulė veikia tiek mažėjant, tiek didėjant aritmetinei progresijai.
Pabandykite patys rasti šios aritmetinės progresijos angą ir angą.

Palyginkime rezultatus:

Aritmetinės progresijos savybė

Sudėtingukime uždavinį – išvesime aritmetinės progresijos savybę.
Tarkime, kad mums suteikiama tokia sąlyga:
- aritmetinė progresija, raskite reikšmę.
Lengva, sakai ir pradedi skaičiuoti pagal jau žinomą formulę:

Leisk, ai, tada:

Visiškai teisus. Pasirodo, pirmiausia randame, tada pridedame prie pirmojo skaičiaus ir gauname tai, ko ieškome. Jei progresija vaizduojama mažomis reikšmėmis, tame nėra nieko sudėtingo, bet kas, jei sąlygoje mums pateikiami skaičiai? Sutikite, yra galimybė padaryti klaidą skaičiavimuose.
Dabar pagalvokite, ar įmanoma išspręsti šią problemą vienu žingsniu naudojant bet kokią formulę? Žinoma, taip, ir tai dabar pabandysime atskleisti.

Reikalingą aritmetinės progresijos narį pažymėkime taip, kaip mums žinoma jo radimo formulė – tai ta pati formulė, kurią išvedėme pradžioje:
, Tada:

  • ankstesnis progresavimo terminas yra:
  • kitas progresavimo terminas yra:

Apibendrinkime ankstesnes ir paskesnes progreso sąlygas:

Pasirodo, kad ankstesnių ir paskesnių progresijos narių suma yra dviguba tarp jų esančio progresijos nario reikšmė. Kitaip tariant, norėdami rasti progresijos nario vertę su žinomomis ankstesnėmis ir nuosekliomis reikšmėmis, turite jas pridėti ir padalyti iš.

Teisingai, mes gavome tą patį numerį. Apsaugokime medžiagą. Apskaičiuokite progreso vertę patys, tai visai nėra sunku.

Šauniai padirbėta! Jūs žinote beveik viską apie progresą! Belieka išsiaiškinti tik vieną formulę, kurią, pasak legendos, nesunkiai išvedė vienas didžiausių visų laikų matematikų, „matematikų karalius“ – Karlas Gaussas...

Kai Carlui Gaussei buvo 9 metai, mokytojas, užsiėmęs kitų klasių mokinių darbų tikrinimu, klasėje paskyrė tokią užduotį: „Apskaičiuokite visų natūraliųjų skaičių sumą nuo iki (pagal kitus šaltinius iki) imtinai“. Įsivaizduokite mokytojo nuostabą, kai vienas jo mokinys (tai buvo Karlas Gaussas) po minutės teisingai atsakė į užduotį, o dauguma drąsuolio klasės draugų po ilgų skaičiavimų gavo neteisingą rezultatą...

Jaunasis Carlas Gaussas pastebėjo tam tikrą modelį, kurį taip pat galite lengvai pastebėti.
Tarkime, kad turime aritmetinę progresiją, susidedančią iš -ųjų narių: Turime rasti šių aritmetinės progresijos narių sumą. Žinoma, galime rankiniu būdu susumuoti visas reikšmes, bet kas, jei užduočiai reikia rasti jos terminų sumą, kaip ieškojo Gaussas?

Pavaizduokime mums duotą progresą. Atidžiai apžiūrėkite paryškintus skaičius ir pabandykite su jais atlikti įvairius matematinius veiksmus.


Ar bandėte? Ką pastebėjote? Teisingai! Jų sumos yra lygios


Dabar pasakykite man, kiek tokių porų iš viso yra mums pateiktoje progresijoje? Žinoma, lygiai pusė visų skaičių, tai yra.
Remdamiesi tuo, kad dviejų aritmetinės progresijos narių suma yra lygi, o panašios poros yra lygios, gauname, kad bendra suma yra lygi:
.
Taigi bet kurios aritmetinės progresijos pirmųjų narių sumos formulė bus tokia:

Kai kuriose problemose mes nežinome laipsnio, bet žinome progresijos skirtumą. Pabandykite pakeisti th nario formulę į sumos formulę.
Ką tu gavai?

Šauniai padirbėta! Dabar grįžkime prie uždavinio, kuris buvo užduotas Carlui Gaussui: patys apskaičiuokite, kam lygi skaičių, prasidedančių nuo th, suma ir skaičių, prasidedančių nuo th, suma.

Kiek gavai?
Gaussas nustatė, kad terminų suma yra lygi, o terminų suma. Ar taip nusprendėte?

Tiesą sakant, aritmetinės progresijos terminų sumos formulę dar III amžiuje įrodė senovės graikų mokslininkas Diofantas, ir visą tą laiką sąmojingi žmonės visapusiškai pasinaudojo aritmetinės progresijos savybėmis.
Pavyzdžiui, įsivaizduokite Senovės Egiptas ir didžiausias to meto statybos projektas - piramidės statyba... Paveiksle pavaizduota viena jos pusė.

Sakysite, kur čia progresas? Atidžiai pažiūrėkite ir suraskite smėlio blokų skaičių kiekvienoje piramidės sienos eilutėje.


Kodėl gi ne aritmetinė progresija? Apskaičiuokite, kiek blokų reikia vienai sienai pastatyti, jei prie pagrindo dedamos blokinės plytos. Tikiuosi, neskaičiuosite judindami pirštu per monitorių, pamenate paskutinę formulę ir viską, ką sakėme apie aritmetinę progresiją?

Šiuo atveju progresas atrodo taip: .
Aritmetinės progresijos skirtumas.
Aritmetinės progresijos narių skaičius.
Pakeiskime savo duomenis į paskutines formules (blokų skaičių apskaičiuokite 2 būdais).

1 būdas.

2 metodas.

O dabar galite apskaičiuoti monitoriuje: palyginkite gautas vertes su mūsų piramidėje esančių blokų skaičiumi. Supratau? Puiku, jūs įvaldėte aritmetinės progresijos n-ųjų narių sumą.
Žinoma, jūs negalite statyti piramidės iš blokų prie pagrindo, bet iš? Pabandykite apskaičiuoti, kiek smėlio plytų reikia norint pastatyti sieną su tokia sąlyga.
Ar susitvarkei?
Teisingas atsakymas yra blokai:

Treniruotės

Užduotys:

  1. Maša įgauna formą vasarai. Kiekvieną dieną ji padidina pritūpimų skaičių. Kiek kartų Maša darys pritūpimus per savaitę, jei pritūpimus padarė per pirmąją treniruotę?
  2. Kokia yra visų nelyginių skaičių suma.
  3. Saugodami rąstus, kirtėjai juos sukrauna taip, kad kiekviename viršutiniame sluoksnyje būtų vienu rąstu mažiau nei ankstesniame. Kiek rąstų yra viename mūre, jei mūro pamatas yra rąstai?

Atsakymai:

  1. Apibrėžkime aritmetinės progresijos parametrus. Tokiu atveju
    (savaitės = dienos).

    Atsakymas: Per dvi savaites Maša turėtų daryti pritūpimus kartą per dieną.

  2. Pirmas nelyginis skaičius, paskutinis numeris.
    Aritmetinės progresijos skirtumas.
    Nelyginių skaičių skaičius yra pusė, tačiau patikrinkime šį faktą naudodami formulę, skirtą aritmetinės progresijos namui rasti:

    Skaičiuose yra nelyginių skaičių.
    Pakeiskime turimus duomenis į formulę:

    Atsakymas: Visų nelyginių skaičių suma yra lygi.

  3. Prisiminkime problemą dėl piramidžių. Mūsų atveju a , nes kiekvienas viršutinis sluoksnis sumažinamas vienu rąstu, tada iš viso yra krūva sluoksnių, tai yra.
    Pakeiskime duomenis į formulę:

    Atsakymas: Mūre yra rąstų.

Apibendrinkime

  1. - skaičių seka, kurioje skirtumas tarp gretimų skaičių yra vienodas ir lygus. Jis gali didėti arba mažėti.
  2. Formulės radimas Trečiasis aritmetinės progresijos narys užrašomas formule - , kur yra skaičių skaičius progresijoje.
  3. Aritmetinės progresijos narių savybė- - kur yra einančių skaičių skaičius.
  4. Aritmetinės progresijos narių suma galima rasti dviem būdais:

    , kur yra reikšmių skaičius.

ARITMETINĖ PROGRESIJA. VIDUTINIS LYGIS

Skaičių seka

Susėskime ir pradėkime rašyti keletą skaičių. Pavyzdžiui:

Galite rašyti bet kokius skaičius ir jų gali būti tiek, kiek norite. Bet visada galime pasakyti, kuris pirmas, kuris antras ir t.t., tai yra, galime juos sunumeruoti. Tai yra skaičių sekos pavyzdys.

Skaičių seka yra skaičių rinkinys, kiekvienam iš kurių galima priskirti unikalų numerį.

Kitaip tariant, kiekvienas skaičius gali būti susietas su tam tikru natūraliu skaičiumi ir unikaliu. Ir mes nepriskirsime šio numerio jokiam kitam numeriui iš šio rinkinio.

Skaičius su skaičiumi vadinamas sekos nariu.

Paprastai visą seką vadiname kokia nors raide (pavyzdžiui,), ir kiekvienas šios sekos narys yra ta pati raidė, kurios indeksas lygus šio nario skaičiui: .

Labai patogu, jei sekos d-asis narys gali būti nurodytas kokia nors formule. Pavyzdžiui, formulė

nustato seką:

O formulė yra tokia seka:

Pavyzdžiui, aritmetinė progresija yra seka (pirmasis narys čia yra lygus, o skirtumas yra). Arba (, skirtumas).

n-ojo termino formulė

Formulę vadiname pasikartojančia, kurioje, norint sužinoti terminą, reikia žinoti ankstesnį ar kelis ankstesnius:

Norėdami, pavyzdžiui, pagal šią formulę rasti progresijos t-ąjį narį, turėsime apskaičiuoti ankstesnius devynis. Pavyzdžiui, leiskite. Tada:

Na, ar dabar aišku, kokia yra formulė?

Kiekvienoje eilutėje pridedame, padauginus iš tam tikro skaičiaus. Kuris? Labai paprasta: tai yra dabartinio nario skaičius, atėmus:

Dabar daug patogiau, tiesa? Mes tikriname:

Spręskite patys:

Aritmetinėje progresijoje raskite n-ojo nario formulę ir suraskite šimtąjį narį.

Sprendimas:

Pirmasis terminas yra lygus. Koks skirtumas? Štai kas:

(Štai kodėl jis vadinamas skirtumu, nes lygus nuoseklių progresijos narių skirtumui).

Taigi, formulė:

Tada šimtasis narys yra lygus:

Kokia yra visų natūraliųjų skaičių suma nuo iki?

Pasak legendos, didysis matematikas Carlas Gaussas, būdamas 9 metų berniukas, šią sumą apskaičiavo per kelias minutes. Jis pastebėjo, kad pirmojo ir paskutinio skaičių suma yra lygi, antrojo ir priešpaskutinio – vienodos, trečio ir 3-iojo nuo galo suma yra vienoda ir t.t. Kiek tokių porų iš viso yra? Teisingai, lygiai pusė visų skaičių, tai yra. Taigi,

Bendra bet kurios aritmetinės progresijos pirmųjų narių sumos formulė bus tokia:

Pavyzdys:
Raskite visų dviženklių kartotinių sumą.

Sprendimas:

Pirmasis toks skaičius yra šis. Kiekvienas paskesnis skaičius gaunamas pridedant prie ankstesnio skaičiaus. Taigi mus dominantys skaičiai sudaro aritmetinę progresiją su pirmuoju nariu ir skirtumu.

Šios progresijos termino formulė:

Kiek terminų yra progresijoje, jei jie visi turi būti dviženkliai?

Labai lengva: .

Paskutinis progresavimo terminas bus lygus. Tada suma:

Atsakymas:.

Dabar spręskite patys:

  1. Kiekvieną dieną sportininkas nubėga daugiau metrų nei praėjusią dieną. Kiek iš viso kilometrų jis nubėgs per savaites, jei pirmą dieną nubėgo km m?
  2. Dviratininkas kasdien nuvažiuoja daugiau kilometrų nei praėjusią dieną. Pirmą dieną nukeliavo km. Kiek dienų jam reikia važiuoti, kad įveiktų kilometrą? Kiek kilometrų jis nuvažiuos per paskutinę kelionės dieną?
  3. Kasmet tiek pat mažėja šaldytuvo kaina parduotuvėje. Nustatykite, kiek kasmet sumažėjo šaldytuvo kaina, jei parduotas už rublius, o po šešerių metų jis buvo parduotas už rublius.

Atsakymai:

  1. Čia svarbiausia atpažinti aritmetinę progresiją ir nustatyti jos parametrus. Šiuo atveju (savaitės = dienos). Turite nustatyti pirmųjų šios progresijos sąlygų sumą:
    .
    Atsakymas:
  2. Čia pateikiama: , reikia rasti.
    Akivaizdu, kad turite naudoti tą pačią sumos formulę kaip ir ankstesnėje užduotyje:
    .
    Pakeiskite reikšmes:

    Šaknis akivaizdžiai netelpa, tad atsakymas toks.
    Apskaičiuokime nueitą kelią per paskutinę dieną, naudodami antrojo termino formulę:
    (km).
    Atsakymas:

  3. Duota:. Rasti:.
    Tai negali būti paprasčiau:
    (trinti).
    Atsakymas:

ARITMETINĖ PROGRESIJA. TRUMPAI APIE PAGRINDINIUS DALYKUS

Tai skaičių seka, kurioje skirtumas tarp gretimų skaičių yra vienodas ir lygus.

Aritmetinė progresija gali būti didėjanti () ir mažėjanti ().

Pavyzdžiui:

Aritmetinės progresijos n-ojo nario radimo formulė

parašyta formule, kur yra einančių skaičių skaičius.

Aritmetinės progresijos narių savybė

Tai leidžia lengvai rasti progresijos narį, jei žinomi jo kaimyniniai nariai – kur yra skaičių skaičius progresijoje.

Aritmetinės progresijos narių suma

Yra du būdai sužinoti sumą:

Kur yra reikšmių skaičius.

Kur yra reikšmių skaičius.

LIKUSIAI 2/3 STRAIPSNIŲ PRIEINAMI TIK YOUCLEVER STUDENTIAMS!

Tapk YouClever studentu,

Pasiruoškite vieningam valstybiniam matematikos egzaminui arba vieningam valstybiniam egzaminui už „puodelį kavos per mėnesį“,

Taip pat gaukite neribotą prieigą prie vadovėlio „YouClever“, pasirengimo programos (darbo knygos) „100gia“, neribotą teisminis vieningas valstybinis egzaminas ir OGE, 6000 problemų su sprendimų analize ir kitomis paslaugomis YouClever ir 100gia.