Vieta teoreem ruutvõrrandite ja muude võrrandite jaoks. Vieti teoreem, vieti pöördvalem ja näited mannekeenide lahendusega Vieti eliminatsiooniteoreem

Mis tahes täielik ruutvõrrand ax2 + bx + c = 0 võib meelde tuletada x 2 + (b/a)x + (c/a) = 0, kui jagame esmalt iga liikme koefitsiendiga a enne x2. Ja kui võtta kasutusele uus tähistus (b/a) = p ja (c/a) = q, siis saame võrrandi x 2 + pikslit + q = 0, mida matemaatikas nimetatakse redutseeritud ruutvõrrand.

Redutseeritud ruutvõrrandi juured ja koefitsiendid lk ja q omavahel seotud. See on kinnitatud Vieta teoreem, mis sai nime 16. sajandi lõpus elanud prantsuse matemaatiku Francois Vieta järgi.

Teoreem. Redutseeritud ruutvõrrandi juurte summa x 2 + pikslit + q = 0 võrdne teise koefitsiendiga lk, mis võetakse vastupidise märgiga, ja juurte korrutis - vabale terminile q.

Kirjutame need suhted järgmisel kujul:

Lase x 1 ja x2 redutseeritud võrrandi erinevad juured x 2 + pikslit + q = 0. Vastavalt Vieta teoreemile x1 + x2 = -p ja x 1 x 2 = q.

Selle tõestamiseks asendame võrrandis mõlemad juured x 1 ja x 2. Saame kaks tõelist võrdsust:

x 1 2 + px 1 + q = 0

x 2 2 + px 2 + q = 0

Lahutage esimesest võrdsusest teine. Saame:

x 1 2 – x 2 2 + p(x 1 – x 2) = 0

Laiendame kahte esimest terminit vastavalt ruutude erinevuse valemile:

(x 1 - x 2) (x 1 - x 2) + p (x 1 - x 2) = 0

Tingimuse järgi on juured x 1 ja x 2 erinevad. Seetõttu saame võrdsust vähendada (x 1 - x 2) ≠ 0 võrra ja väljendada p.

(x 1 + x 2) + p = 0;

(x 1 + x 2) = -p.

Esimene võrdsus on tõestatud.

Teise võrdsuse tõestamiseks asendame esimese võrrandiga

x 1 2 + px 1 + q \u003d 0 koefitsiendi p asemel, selle võrdne arv on (x 1 + x 2):

x 1 2 – (x 1 + x 2) x 1 + q \u003d 0

Teisendades võrrandi vasakut külge, saame:

x 1 2 - x 2 2 - x 1 x 2 + q \u003d 0;

x 1 x 2 = q, mida tuli tõestada.

Vieta teoreem on hea, sest isegi ruutvõrrandi juuri teadmata saame arvutada nende summa ja korrutise .

Vieta teoreem aitab määrata antud ruutvõrrandi täisarvu juuri. Kuid paljudele õpilastele tekitab see raskusi, kuna nad ei tea selget tegevusalgoritmi, eriti kui võrrandi juurtel on erinevad märgid.

Seega on antud ruutvõrrandi kuju x 2 + px + q \u003d 0, kus x 1 ja x 2 on selle juured. Vieta teoreemi järgi x 1 + x 2 = -p ja x 1 x 2 = q.

Võime teha järgmise järelduse.

Kui võrrandis eelneb viimasele liikmele miinusmärk, siis juurtel x 1 ja x 2 on erinevad märgid. Lisaks on väiksema juure märk sama, mis võrrandi teise koefitsiendi märk.

Lähtudes sellest, et erinevate märkidega arvude liitmisel lahutatakse nende moodulid ja tulemuse ette asetatakse moodulis suurema arvu märk, tuleks toimida järgmiselt:

  1. määrake arvu q sellised tegurid, et nende erinevus oleks võrdne arvuga p;
  2. pane saadud arvudest väiksema ette võrrandi teise kordaja märk; teisel juurel on vastupidine märk.

Vaatame mõnda näidet.

Näide 1.

Lahendage võrrand x 2 - 2x - 15 = 0.

Lahendus.

Proovime seda võrrandit lahendada ülaltoodud reeglite abil. Siis võime kindlalt väita, et sellel võrrandil on kaks erinevat juurt, sest D \u003d b 2 - 4ac \u003d 4 - 4 (-15) \u003d 64\u003e 0.

Nüüd valime kõigi arvu 15 tegurite (1 ja 15, 3 ja 5) hulgast need, mille vahe on 2. Need on numbrid 3 ja 5. Väiksema arvu ette paneme miinusmärgi , st. võrrandi teise kordaja märk. Seega saame võrrandi x 1 \u003d -3 ja x 2 \u003d 5 juured.

Vastus. x 1 = -3 ja x 2 = 5.

Näide 2.

Lahendage võrrand x 2 + 5x - 6 = 0.

Lahendus.

Kontrollime, kas sellel võrrandil on juured. Selleks leiame diskriminandi:

D \u003d b 2 - 4ac \u003d 25 + 24 \u003d 49\u003e 0. Võrrandil on kaks erinevat juurt.

Arvu 6 võimalikud tegurid on 2 ja 3, 6 ja 1. Paari 6 ja 1 puhul on erinevus 5. Selles näites on teise liikme koefitsiendil plussmärk, nii et väiksemal arvul on sama märk. Kuid enne teist numbrit on miinusmärk.

Vastus: x 1 = -6 ja x 2 = 1.

Vieta teoreemi saab kirjutada ka täieliku ruutvõrrandi jaoks. Nii et kui ruutvõrrand ax2 + bx + c = 0 on juured x 1 ja x 2 , siis nad rahuldavad võrdusi

x 1 + x 2 = -(b/a) ja x 1 x 2 = (c/a). Selle teoreemi rakendamine täisruutvõrrandis on aga üsna problemaatiline, kuna juurte olemasolul on vähemalt üks neist murdarv. Ja fraktsioonide valikuga töötamine on üsna keeruline. Kuid ikkagi on väljapääs.

Vaatleme täielikku ruutvõrrandit ax 2 + bx + c = 0. Korrutage selle vasak ja parem külg koefitsiendiga a. Võrrand saab kujul (ax) 2 + b(ax) + ac = 0. Nüüd võtame kasutusele uue muutuja, näiteks t = ax.

Sel juhul muutub saadud võrrand redutseeritud ruutvõrrandiks kujul t 2 + bt + ac = 0, mille juured t 1 ja t 2 (kui neid on) saab määrata Vieta teoreemi abil.

Sel juhul on algse ruutvõrrandi juured

x 1 = (t 1 / a) ja x 2 = (t 2 / a).

Näide 3.

Lahendage võrrand 15x 2 - 11x + 2 = 0.

Lahendus.

Koostame abivõrrandi. Korrutame võrrandi iga liikme 15-ga:

15 2 x 2 – 11 15 x + 15 2 = 0.

Teeme muudatuse t = 15x. Meil on:

t 2 – 11t + 30 = 0.

Vieta teoreemi kohaselt on selle võrrandi juured t 1 = 5 ja t 2 = 6.

Pöördume tagasi asendusse t = 15x:

5 = 15x või 6 = 15x. Seega x 1 = 5/15 ja x 2 = 6/15. Vähendame ja saame lõpliku vastuse: x 1 = 1/3 ja x 2 = 2/5.

Vastus. x 1 = 1/3 ja x 2 = 2/5.

Ruutvõrrandite lahendamise valdamiseks Vieta teoreemi abil peavad õpilased harjutama nii palju kui võimalik. See on täpselt edu saladus.

saidil, materjali täieliku või osalise kopeerimise korral on nõutav link allikale.

Vieta teoreem (täpsemalt Vieta teoreemile pöördvõrdeline teoreem) võimaldab vähendada ruutvõrrandite lahendamise aega. Peate lihtsalt teadma, kuidas seda kasutada. Kuidas õppida lahendama ruutvõrrandeid Vieta teoreemi abil? See on lihtne, kui sa natuke mõtled.

Nüüd räägime ainult taandatud ruutvõrrandi lahendamisest Vieta teoreemi abil Taandatud ruutvõrrand on võrrand, milles a, st x² ees olev koefitsient on võrdne ühega. Esitamata ruutvõrrandid saab lahendada ka Vieta teoreemi abil, kuid juba seal ei ole vähemalt üks juurtest täisarv. Neid on raskem ära arvata.

Vieta teoreemile vastav teoreem ütleb: kui arvud x1 ja x2 on sellised, et

siis x1 ja x2 on ruutvõrrandi juured

Ruutvõrrandi lahendamisel Vieta teoreemi abil on võimalikud ainult 4 võimalust. Kui arutluskäiku mäletate, saate väga kiiresti õppida leidma terveid juuri.

I. Kui q on positiivne arv,

see tähendab, et juured x1 ja x2 on sama märgiga arvud (sest ainult samade märkidega arvude korrutamisel saadakse positiivne arv).

k.a. Kui -p on positiivne arv, (vastavalt lk<0), то оба корня x1 и x2 — положительные числа (поскольку складывали числа одного знака и получили положительное число).

I.b. Kui -p on negatiivne arv, (vastavalt p>0), siis on mõlemad juured negatiivsed arvud (liidesid sama märgiga arvud, said negatiivse arvu).

II. Kui q on negatiivne arv,

see tähendab, et juurtel x1 ja x2 on erinevad märgid (arvude korrutamisel saadakse negatiivne arv ainult siis, kui tegurite märgid on erinevad). Sel juhul ei ole x1 + x2 enam summa, vaid vahe (eri märgiga arvude liitmisel lahutame ju suuremast moodulist väiksema). Seetõttu näitab x1 + x2, kui palju erinevad juured x1 ja x2, st kui palju üks juur on teisest suurem (moodul).

II.a. Kui -p on positiivne arv, (st lk<0), то больший (по модулю) корень — положительное число.

II.b. Kui -p on negatiivne arv, (p>0), siis suurem (mooduli) juur on negatiivne arv.

Vaatleme ruutvõrrandite lahendamist Vieta teoreemi järgi näidete abil.

Lahendage antud ruutvõrrand Vieta teoreemi abil:

Siin q=12>0, seega on juured x1 ja x2 sama märgiga arvud. Nende summa on -p=7>0, seega on mõlemad juured positiivsed arvud. Valime täisarvud, mille korrutis on 12. Need on 1 ja 12, 2 ja 6, 3 ja 4. Paari 3 ja 4 summa on 7. Seega on 3 ja 4 võrrandi juured.

Selles näites q=16>0, mis tähendab, et juured x1 ja x2 on sama märgiga arvud. Nende summa -p=-10<0, поэтому оба корня — отрицательные числа. Подбираем числа, произведение которых равно 16. Это 1 и 16, 2 и 8, 4 и 4. Сумма 2 и 8 равна 10, а раз нужны отрицательные числа, то искомые корни — это -2 и -8.

Siin q=-15<0, что означает, что корни x1 и x2 — числа разных знаков. Поэтому 2 — это уже не их сумма, а разность, то есть числа отличаются на 2. Подбираем числа, произведение которых равно 15, отличающиеся на 2. Произведение равно 15 у 1 и 15, 3 и 5. Отличаются на 2 числа в паре 3 и 5. Поскольку -p=2>0, siis on suurem arv positiivne. Nii et juured on 5 ja -3.

q = -36<0, значит, корни x1 и x2 имеют разные знаки. Тогда 5 — это то, насколько отличаются x1 и x2 (по модулю, то есть пока что без учета знака). Среди чисел, произведение которых равно 36: 1 и 36, 2 и 18, 3 и 12, 4 и 9 — выбираем пару, в которой числа отличаются на 5. Это 4 и 9. Осталось определить их знаки. Поскольку -p=-5<0, бОльшее число имеет знак минус. Поэтому корни данного уравнения равны -9 и 4.

Peaaegu iga ruutvõrrandi \ saab teisendada kujule \ See on aga võimalik, kui iga liige jagatakse algselt koefitsiendiga \ ees \ Lisaks saab kasutusele võtta uue tähise:

\[(\frac (b)(a))= p\] ja \[(\frac (c)(a)) = q\]

Tänu sellele saame võrrandi \, mida matemaatikas nimetatakse taandatud ruutvõrrandiks. Selle võrrandi juured ja koefitsiendid \ on omavahel seotud, mida kinnitab Vieta teoreem.

Vieta teoreem: Taandatud ruutvõrrandi \ juurte summa võrdub teise koefitsiendiga \, mis on võetud vastupidise märgiga ja juurte korrutis on vaba liige \

Selguse huvides lahendame järgmise vormi võrrandi:

Lahendame selle ruutvõrrandi kirjutatud reeglite abil. Pärast algandmete analüüsi võime järeldada, et võrrandil on kaks erinevat juurt, sest:

Nüüd valime kõigi arvu 15 tegurite (1 ja 15, 3 ja 5) hulgast need, mille vahe on 2. Selle tingimuse alla kuuluvad arvud 3 ja 5. Väiksema ette paneme miinusmärgi number. Seega saame võrrandi \ juured

Vastus: \[ x_1= -3 ja x_2 = 5\]

Kus ma saan võrgus Vieta teoreemi abil võrrandit lahendada?

Võrrandi saate lahendada meie veebisaidil https: //. Tasuta veebilahendaja võimaldab teil sekunditega lahendada mis tahes keerukusega võrguvõrrandi. Kõik, mida pead tegema, on lihtsalt sisestada oma andmed lahendajasse. Samuti saate vaadata videojuhendit ja õppida võrrandit lahendama meie veebisaidil. Ja kui teil on küsimusi, võite neid küsida meie Vkontakte grupis http://vk.com/pocketteacher. Liituge meie grupiga, aitame teid alati hea meelega.


Ruutvõrrandi juurte ja kordajate vahel on lisaks juurvalemitele ka muid kasulikke seoseid, mis on antud Vieta teoreem. Selles artiklis esitame ruutvõrrandi Vieta teoreemi sõnastuse ja tõestuse. Järgmisena käsitleme teoreemi, mis on vastupidine Vieta teoreemile. Pärast seda analüüsime kõige iseloomulikumate näidete lahendusi. Lõpuks kirjutame üles Vieta valemid, mis määratlevad seose tegelike juurte vahel algebraline võrrand aste n ja selle koefitsiendid.

Leheküljel navigeerimine.

Vieta teoreem, sõnastus, tõestus

Ruutvõrrandi juurte valemitest a x 2 +b x+c=0 vormi , kus D=b 2 −4 a c , seosed x 1 +x 2 = −b/a, x 1 x 2 = c/a . Need tulemused on kinnitatud Vieta teoreem:

Teoreem.

Kui a x 1 ja x 2 on ruutvõrrandi a x 2 +b x+c=0 juured, siis võrdub juurte summa vastasmärgiga koefitsientide b ja a suhtega ja korrutisega juur võrdub koefitsientide c ja a suhtega, see tähendab .

Tõestus.

Tõestame Vieta teoreemi järgmise skeemi järgi: koostame ruutvõrrandi juurte summa ja korrutise teadaolevate juurvalemite abil, seejärel teisendame saadud avaldised ja veendume, et need on võrdsed −b /a ja c/a vastavalt.

Alustame juurte summast, koostame selle. Nüüd viime murrud ühise nimetaja juurde, meil on. Saadud murru lugejas , mille järel : . Lõpuks, pärast 2, saame . See tõestab Vieta teoreemi esimest seost ruutvõrrandi juurte summa kohta. Liigume teise juurde.

Koostame ruutvõrrandi juurte korrutise:. Murdude korrutamise reegli järgi võib viimase korrutise kirjutada kujul. Nüüd korrutame sulu lugejas oleva suuga, kuid seda toodet on kiirem ahendada ruutude erinevuse valem, Nii et. Seejärel, pidades meeles, teostame järgmise ülemineku. Ja kuna valem D=b 2 −4 a·c vastab ruutvõrrandi diskriminandile, siis saab b 2 −4·a·c asendada D asemel viimaseks murruks, saame . Pärast sulgude avamist ja sarnaste terminite vähendamist jõuame murduni ja selle vähendamine 4·a võrra annab . See tõestab Vieta teoreemi teist seost juurte korrutise kohta.

Kui jätame seletused välja, on Vieta teoreemi tõestus kokkuvõtlik:
,
.

Jääb vaid märkida, et kui diskriminant on võrdne nulliga, on ruutvõrrandil üks juur. Kui aga eeldada, et võrrandil on sel juhul kaks identset juurt, siis kehtivad ka Vieta teoreemi võrrandid. Tõepoolest, kui D=0 ruutvõrrandi juur on , siis ja , ning kuna D=0, st b 2 −4·a·c=0 , kust b 2 =4·a·c , siis .

Praktikas kasutatakse Vieta teoreemi kõige sagedamini seoses taandatud ruutvõrrandiga (kõrgeima koefitsiendiga a on 1) kujul x 2 +p·x+q=0 . Mõnikord on see sõnastatud just seda tüüpi ruutvõrranditele, mis ei piira üldistust, kuna iga ruutvõrrandi saab asendada samaväärse võrrandiga, jagades selle mõlemad osad nullist erineva arvuga a. Siin on Vieta teoreemi vastav sõnastus:

Teoreem.

Redutseeritud ruutvõrrandi juurte summa x 2 + p x + q \u003d 0 on võrdne koefitsiendiga punktis x, mis on võetud vastupidise märgiga, ja juurte korrutis on vaba liige, see tähendab x 1 + x 2 \u003d −p, x 1 x 2 = q.

Teoreem on Vieta teoreemi pöördvõrdeline

Vieta teoreemi teine ​​sõnastus, mis on toodud eelmises lõigus, näitab, et kui x 1 ja x 2 on taandatud ruutvõrrandi x 2 +p x+q=0 juured, siis seosed x 1 +x 2 = − p , x 1 x 2 = q. Seevastu kirjutatud seostest x 1 +x 2 =−p, x 1 x 2 =q järeldub, et x 1 ja x 2 on ruutvõrrandi x 2 +p x+q=0 juured. Teisisõnu, väide, mis on vastupidine Vieta teoreemile, on tõene. Sõnastame selle teoreemi kujul ja tõestame.

Teoreem.

Kui arvud x 1 ja x 2 on sellised, et x 1 +x 2 =−p ja x 1 x 2 =q, siis on x 1 ja x 2 taandatud ruutvõrrandi x 2 +p x+q=0 juured. .

Tõestus.

Pärast koefitsientide p ja q asendamist nende avaldises võrrandis x 2 +p x+q=0 läbi x 1 ja x 2 teisendatakse see samaväärseks võrrandiks.

Asendame saadud võrrandis x asemel arvu x 1, meil on võrdsus x 1 2 −(x 1 + x 2) x 1 + x 1 x 2 =0, mis iga x 1 ja x 2 korral on õige arvuline võrdus 0=0, kuna x 1 2 −(x 1 + x 2) x 1 + x 1 x 2 = x 1 2 −x 1 2 −x 2 x 1 + x 1 x 2 =0. Seetõttu on x 1 võrrandi juur x 2 − (x 1 + x 2) x + x 1 x 2 \u003d 0, mis tähendab, et x 1 on ekvivalentvõrrandi x 2 +p x+q=0 juur.

Kui võrrandis x 2 − (x 1 + x 2) x + x 1 x 2 \u003d 0 asenda x asemel arv x 2, siis saame võrdsuse x 2 2 −(x 1 + x 2) x 2 + x 1 x 2 =0. See on õige võrrand, sest x 2 2 −(x 1 + x 2) x 2 + x 1 x 2 = x 2 2 −x 1 x 2 −x 2 2 +x 1 x 2 =0. Seetõttu on x 2 ka võrrandi juur x 2 − (x 1 + x 2) x + x 1 x 2 \u003d 0, ja seega võrrandid x 2 +p x+q=0 .

See lõpetab Vieta teoreemile vastupidise teoreemi tõestamise.

Näiteid Vieta teoreemi kasutamisest

On aeg rääkida Vieta teoreemi ja selle pöördteoreemi praktilisest rakendamisest. Selles alapeatükis analüüsime mitmete kõige tüüpilisemate näidete lahendusi.

Alustuseks rakendame Vieta teoreemile vastupidise teoreemi. Selle abil on mugav kontrollida, kas antud kaks arvu on antud ruutvõrrandi juured. Sel juhul arvutatakse nende summa ja vahe, misjärel kontrollitakse seoste kehtivust. Kui mõlemad seosed on täidetud, siis Vieta teoreemile vastupidise teoreemi alusel järeldatakse, et need arvud on võrrandi juured. Kui vähemalt üks seostest ei ole täidetud, ei ole need arvud ruutvõrrandi juured. Seda lähenemist saab kasutada ruutvõrrandite lahendamisel leitud juurte kontrollimiseks.

Näide.

Milline arvupaaridest 1) x 1 =−5, x 2 =3 või 2) või 3) on ruutvõrrandi 4 x 2 −16 x+9=0 juurte paar?

Lahendus.

Antud ruutvõrrandi 4 x 2 −16 x+9=0 koefitsiendid on a=4 , b=−16 , c=9 . Vieta teoreemi järgi peab ruutvõrrandi juurte summa olema võrdne −b/a, see tähendab 16/4=4 ja juurte korrutis peab olema võrdne c/a, see tähendab 9 /4.

Nüüd arvutame kõigis kolmes antud paaris olevate arvude summa ja korrutise ning võrdleme neid äsja saadud väärtustega.

Esimesel juhul on meil x 1 +x 2 =−5+3=−2 . Saadud väärtus erineb 4-st, seetõttu ei saa täiendavat kontrollimist läbi viia, kuid teoreemi, Vieta teoreemi pöördväärtuse põhjal saame kohe järeldada, et esimene arvupaar ei ole antud ruutvõrrandi juurte paar. .

Liigume edasi teise juhtumi juurde. Siin on esimene tingimus täidetud. Kontrollime teist tingimust: , saadud väärtus erineb 9/4-st. Seetõttu ei ole teine ​​arvupaar ruutvõrrandi juurte paar.

Jääb viimane juhtum. Siin ja . Mõlemad tingimused on täidetud, seega on need arvud x 1 ja x 2 antud ruutvõrrandi juurteks.

Vastus:

Teoreemi, Vieta teoreemi vastupidist, saab praktikas kasutada ruutvõrrandi juurte valimiseks. Tavaliselt valitakse antud ruutvõrrandi täisarvuliste koefitsientidega täisjuured, kuna muudel juhtudel on seda üsna raske teha. Samal ajal kasutavad nad seda, et kui kahe arvu summa on võrdne ruutvõrrandi teise koefitsiendiga, mis on võetud miinusmärgiga, ja nende arvude korrutis on võrdne vaba liikmega, siis need arvud on selle ruutvõrrandi juured. Käsitleme seda näitega.

Võtame ruutvõrrandi x 2 −5 x+6=0 . Et arvud x 1 ja x 2 oleksid selle võrrandi juured, peavad olema täidetud kaks võrdsust x 1 +x 2 \u003d 5 ja x 1 x 2 \u003d 6. Jääb üle valida sellised numbrid. Sel juhul on seda üsna lihtne teha: sellised arvud on 2 ja 3, kuna 2+3=5 ja 2 3=6 . Seega on 2 ja 3 selle ruutvõrrandi juured.

Vieta teoreemile vastupidine teoreem on eriti mugav redutseeritud ruutvõrrandi teise juure leidmiseks, kui üks juurtest on juba teada või ilmne. Sel juhul leitakse mis tahes seostest teine ​​juur.

Näiteks võtame ruutvõrrandi 512 x 2 −509 x−3=0 . Siin on lihtne näha, et ühik on võrrandi juur, kuna selle ruutvõrrandi kordajate summa on null. Seega x 1 = 1. Teise juure x 2 võib leida näiteks seosest x 1 x 2 =c/a. Meil on 1 x 2 = −3/512 , kust x 2 = −3/512 . Seega oleme defineerinud ruutvõrrandi mõlemad juured: 1 ja −3/512.

On selge, et juurte valik on otstarbekas ainult kõige lihtsamatel juhtudel. Muudel juhtudel saab juurte leidmiseks rakendada ruutvõrrandi juurte valemeid läbi diskriminandi.

Teine teoreemi praktiline rakendus, Vieta teoreemi pöördväärtus, on ruutvõrrandite koostamine antud juurte x 1 ja x 2 jaoks. Selleks piisab, kui arvutada juurte summa, mis annab antud ruutvõrrandi vastasmärgiga kordaja x, ja juurte korrutis, mis annab vaba liikme.

Näide.

Kirjutage ruutvõrrand, mille juurteks on arvud −11 ja 23.

Lahendus.

Tähistame x 1 =−11 ja x 2 =23 . Arvutame nende arvude summa ja korrutise: x 1 + x 2 \u003d 12 ja x 1 x 2 \u003d −253. Seetõttu on need arvud antud ruutvõrrandi juurteks teise koefitsiendiga -12 ja vaba liikmega -253. See tähendab, et x 2 −12·x−253=0 on soovitud võrrand.

Vastus:

x 2 −12 x −253=0 .

Vieta teoreemi kasutatakse väga sageli ruutvõrrandite juurte märkidega seotud ülesannete lahendamisel. Kuidas on Vieta teoreem seotud taandatud ruutvõrrandi x 2 +p x+q=0 juurte märkidega? Siin on kaks asjakohast väidet:

  • Kui vaba liige q on positiivne arv ja ruutvõrrandil on reaaljuured, siis on need mõlemad positiivsed või mõlemad negatiivsed.
  • Kui vaba liige q on negatiivne arv ja kui ruutvõrrandil on reaaljuured, siis on nende märgid erinevad ehk teisisõnu üks juur on positiivne ja teine ​​negatiivne.

Need väited tulenevad valemist x 1 x 2 =q, samuti positiivsete, negatiivsete ja erineva märgiga arvude korrutamise reeglitest. Mõelge nende rakendamise näidetele.

Näide.

R on positiivne. Diskriminandi valemi järgi leiame D=(r+2) 2 −4 1 (r−1)= r 2 +4 r+4−4 r+4=r 2 +8 , avaldise r 2 väärtuse +8 on positiivne iga reaalse r korral, seega D>0 iga reaalse r korral. Seetõttu on algsel ruutvõrrandil parameetri r mis tahes tegelike väärtuste jaoks kaks juurt.

Nüüd uurime välja, millal on juurtel erinevad märgid. Kui juurte märgid on erinevad, siis on nende korrutis negatiivne ja Vieta teoreemi järgi on antud ruutvõrrandi juurte korrutis võrdne vaba liikmega. Seetõttu oleme huvitatud nendest r väärtustest, mille vaba liige r−1 on negatiivne. Seega, selleks, et leida meile huvi pakkuvad r väärtused, peame seda tegema lahendada lineaarne võrratus r-1<0 , откуда находим r<1 .

Vastus:

aadressil r<1 .

Vieta valemid

Eespool rääkisime Vieta ruutvõrrandi teoreemist ja analüüsisime selles väidetavaid seoseid. Kuid on valemeid, mis ühendavad mitte ainult ruutvõrrandite, vaid ka kuupvõrrandite, neljakordsete võrrandite ja üldiselt, algebralised võrrandid aste n. Neid nimetatakse Vieta valemid.

Kirjutame Vieta valemid vormi n astme algebralise võrrandi jaoks, eeldades, et sellel on n reaaljuurt x 1, x 2, ..., x n (nende hulgas võivad olla samad):

Hankige Vieta valemid võimaldavad polünoomifaktorisatsiooni teoreem, samuti võrdsete polünoomide määratlus kõigi neile vastavate koefitsientide võrdsuse kaudu. Seega on polünoom ja selle laienemine vormi lineaarseteks teguriteks võrdsed. Avades viimases korrutis olevad sulud ja võrdsustades vastavad koefitsiendid, saame Vieta valemid.

Täpsemalt, n=2 puhul oleme juba tuttavad Ruutvõrrandi Vieta valemid.

Kuupvõrrandi jaoks on Vieta valemitel vorm

Jääb üle vaid märkida, et Vieta valemite vasakul küljel on nn elementaar sümmeetrilised polünoomid.

Bibliograafia.

  • Algebra:õpik 8 raku jaoks. Üldharidus institutsioonid / [Yu. N. Makarychev, N. G. Mindjuk, K. I. Neshkov, S. B. Suvorova]; toim. S. A. Teljakovski. - 16. väljaanne. - M. : Haridus, 2008. - 271 lk. : haige. - ISBN 978-5-09-019243-9.
  • Mordkovitš A.G. Algebra. 8. klass. Kell 14 1. osa. Õpik õppeasutuste õpilastele / A. G. Mordkovich. - 11. väljaanne, kustutatud. - M.: Mnemozina, 2009. - 215 lk.: ill. ISBN 978-5-346-01155-2.
  • Algebra ja matemaatilise analüüsi algus. 10. klass: õpik. üldhariduse jaoks institutsioonid: põhi- ja profiil. tasemed / [Yu. M. Koljagin, M. V. Tkatšova, N. E. Fedorova, M. I. Šabunin]; toim. A. B. Žižtšenko. - 3. väljaanne - M.: Valgustus, 2010.- 368 lk. : haige. - ISBN 978-5-09-022771-1.

Koolialgebra kursusel teist järku võrrandite lahendamise viise uurides arvestage saadud juurte omadustega. Nüüd tuntakse neid Vieta teoreemidena. Selle kasutamise näited on toodud käesolevas artiklis.

Ruutvõrrand

Teist järku võrrand on võrdsus, mis on näidatud alloleval fotol.

Siin on sümbolid a, b, c mõned arvud, mida nimetatakse vaadeldava võrrandi koefitsientideks. Võrdsuse lahendamiseks peate leidma x väärtust, mis muudavad selle tõeseks.

Pange tähele, et kuna x tõstetava võimsuse maksimaalne väärtus on kaks, siis on ka juurte arv üldjuhul kaks.

Seda tüüpi võrdõiguslikkuse lahendamiseks on mitu võimalust. Käesolevas artiklis käsitleme ühte neist, mis hõlmab niinimetatud Vieta teoreemi kasutamist.

Vieta teoreemi väide

Kuulus matemaatik Francois Viet (prantslane) märkas 16. sajandi lõpus erinevate ruutvõrrandite juurte omadusi analüüsides, et nende teatud kombinatsioonid rahuldavad konkreetseid seoseid. Eelkõige on need kombinatsioonid nende korrutis ja summa.

Vieta teoreem kehtestab järgmise: ruutvõrrandi juured annavad summeerimisel vastupidise märgiga võetud lineaar- ja ruutkordajate suhte ning nende korrutamisel saadakse vaba liikme ja ruutkordaja suhte. .

Kui võrrandi üldvorm on kirjutatud nii, nagu see on näidatud artikli eelmises jaotises oleval fotol, siis matemaatiliselt saab selle teoreemi kirjutada kahe võrdusena:

  • r 2 + r 1 \u003d -b/a;
  • r 1 x r 2 \u003d c / a.

Kus r 1 , r 2 on vaadeldava võrrandi juurte väärtus.

Neid kahte võrdsust saab kasutada mitmete väga erinevate matemaatikaülesannete lahendamiseks. Vieta teoreemi kasutamine näidetes koos lahendusega on toodud artikli järgmistes osades.