Электрическая гетерогенность сердца. Сократимость миокарда. Физиология. Критический уровень деполяризации Регенераторный деполяризация

Электрический импульс, распространяющийся по сердцу и запускающий каждый цикл сокращений, называется потенциалом действия; он представляет собой волну кратковременной деполяризации, во время которой внутриклеточный потенциал поочередно в каждой клетке становится на короткое время положительным, а затем возвращается к своему исходному отрицательному уровню. Изменения нормального сердечного потенциала действия имеют характерное развитие во времени, которое для удобства подразделено на следующие фазы : фаза 0 - начальная быстрая деполяризация мембраны; фаза 1 - быстрая, но неполная реполяризация; фаза 2 - «плато», или продолжительная деполяризация, характерная для потенциала действия сердечных клеток; фаза 3 - конечная быстрая реполяризация; фаза 4 - период диастолы.

При потенциале действия внутриклеточный потенциал становится положительным, так как возбужденная мембрана временно приобретает большую проницаемость для Na + (по сравнению с К +), поэтому мембранный потенциал на какое-то время приближается по величине к потенциалу равновесия ионов натрия (E Na)- Е Nа можно определить, используя отношение Нернста; при внеклеточной и внутриклеточной концентрации Na + 150 и 10 мМ соответственно он составит:

Однако повышенная проницаемость для Na + сохраняется лишь непродолжительное время, так что мембранный потенциал не достигает E Na и после окончания потенциала действия возвращается к уровню покоя.

Указанные выше изменения проницаемости, вызывающие развитие фазы деполяризации потенциала действия, возникают вследствие открытия и закрытия особых мембранных каналов, или пор, через которые легко проходят ионы натрия. Как полагают, работа «ворот» регулирует открытие и закрытие отдельных каналов, которые могут существовать по меньшей мере в трех конформациях - «открытой», «закрытой» и «инактивированной». Одни ворота, соответствующие активационной переменной «m » в описании Ходжкина - Хаксли ионных потоков натрия в мембране гигантского аксона кальмара, быстро перемещаются, открывая канал, когда мембрана внезапно деполяризуется под действием стимула. Другие ворота, соответствующие инактивационной переменной «h » в описании Ходжкина - Хаксли, при деполяризации движутся медленнее, и их функция заключается в закрытии канала (рис. 3.3). Как установившееся распределение ворот в пределах системы каналов, так и скорость их перехода из одного положения в другое зависят от уровня мембранного потенциала. Поэтому для описания мембранной проводимости Na + используются термины «зависимый от времени» и «потенциалозависимый».

Если мембрану в покое внезапно деполяризовать до уровня положительного потенциала (например, в эксперименте по фиксации потенциала), то активационные ворота быстро изменят свое положение, чтобы открыть натриевые каналы, а затем инактивационные ворота медленно их закроют (рис. 3.3). Слово «медленно» означает здесь, что на инактивацию уходит несколько миллисекунд, тогда как активация происходит в доли миллисекунды. Ворота остаются в указанных положениях до тех пор, пока мембранный потенциал снова не изменится, и для того чтобы все ворота вернулись к исходному состоянию покоя, мембрана должна быть полностью реполяризована до уровня высокого отрицательного потенциала. Если мембрана реполяризуется лишь до невысокого уровня отрицательного потенциала, то некоторые инактивационные ворота останутся закрытыми и максимальное число доступных натриевых каналов, способных открыться при последующей деполяризации, сократится . (Электрическая активность сердечных клеток, в которых натриевые каналы полностью инактивированы, будет обсуждаться ниже.) Полная реполяризация мембраны в конце нормального потенциала действия обеспечивает возврат всех ворот к исходному состоянию и, следовательно, их готовность к следующему потенциалу действия.

Рис. 3.3. Схематическое изображение мембранных каналов для входящих потоков ионов при потенциале покоя, а также при активации и инактивации.

Слева показана последовательность состояний канала при нормальном потенциале покоя -90 мВ. В покое инактивационные ворота как Na + -канала (h), так и медленного Ca 2+ /Na + -канала (f) открыты. Во время активации при возбуждении клетки т-ворота Na + -канала открываются и входящий поток ионовNa + деполяризует клетку, что приводит к нарастанию потенциала действия (график внизу). Затем h-ворота закрываются, инактивируя таким образом проводимостьNa + . При нарастании потенциала действия мембранный потенциал превышает более положительный порог потенциала медленных каналов; их активационные ворота (d) при этом открываются и ионы Ca 2+ и Na + поступают в клетку, вызывая развитие фазы плато потенциала действия. Ворота f, инактивирующие Ca 2+ /Na + -каналы, закрываются гораздо медленнее, чем ворота h, которые инактивируют Na-каналы. На центральном фрагменте показано поведение канала при снижении потенциала покоя до менее чем -60 мВ. Большинство инактивационных ворот Na-канала остается закрытым до тех пор, пока мембрана деполяризована; возникающий при стимуляции клетки входящий потокNa + слишком мал, чтобы вызвать развитие потенциала действия. Однако инактивационные ворота (f) медленных каналов при этом не закрываются и, как показано на фрагменте справа, при достаточном возбуждении клетки, позволяющем открыть медленные каналы и пропустить медленно входящие потоки ионов, возможно ответное медленное развитие потенциала действия.

Рис. 3.4. Пороговый потенциал при возбуждении сердечной клетки.

Слева - потенциал действия, возникающий на уровне потенциала покоя, составляющем -90 мВ; это происходит при возбуждении клетки поступающим импульсом или каким-либо подпороговым стимулом, быстро понижающим мембранный потенциал до значений, лежащих ниже порогового уровня в - 65 мВ. Справа - эффекты двух подпороговых и порогового стимулов. Подпороговые стимулы (а и б) не дают снижения мембранного потенциала до порогового уровня; следовательно, потенциал действия не возникает. Пороговый стимул (в) снижает мембранный потенциал точно до порогового уровня, на котором затем возникает потенциал действия .

Быстрая деполяризация в начале потенциала действия вызывается мощным входящим потоком ионов натрия, поступающих внутрь клетки (соответственно градиенту их электрохимического потенциала) через открытые натриевые каналы . Однако прежде всего натриевые каналы должны быть эффективно открыты, для чего требуется быстрая деполяризация достаточно большой площади мембраны до необходимого уровня, называемого пороговым потенциалом (рис. 3.4). В эксперименте этого можно достичь, пропуская через мембрану ток из внешнего источника и используя внеклеточный или внутриклеточный стимулирующий электрод. В естественных условиях той же цели служат локальные токи, протекающие через мембрану непосредственно перед распространяющимся потенциалом действия. При пороговом потенциале достаточное количество натриевых каналов оказывается открытым, что обеспечивает необходимую амплитуду входящего натриевого тока и, следовательно, дальнейшую деполяризацию мембраны; в свою очередь деполяризация вызывает открытие большего числа каналов, приводя к увеличению входящего потока ионов, так что процесс деполяризации становится регенеративным. Скорость регенеративной деполяризации (или нарастания потенциала действия) зависит от силы входящего натриевого тока, которая в свою очередь определяется такими факторами, как величина градиента электрохимического потенциала Na + и количество доступных (или неинактивированных) натриевых каналов. В волокнах Пуркинье максимальная скорость деполяризации при развитии потенциала действия, обозначаемая как dV/dt max или V max , достигает примерно 500 В/с, и если бы такая скорость поддерживалась в течение всей фазы деполяризации от -90 мВ до +30 мВ, то изменение потенциала на 120 мВ заняло бы около 0,25 мс. Максимальная скорость деполяризации волокон рабочего миокарда желудочков составляет примерно 200 В/с, а мышечных волокон предсердий-от 100 до 200 В/с . (Фаза деполяризации потенциала действия в клетках синусового и атриовентрикулярного узлов существенно отличается от только что описанной и будет обсуждаться отдельно; см. ниже.)

Потенциалы действия с такой высокой скоростью нарастания (их часто называют «быстрыми ответами») быстро распространяются по сердцу. Скорость распространения потенциала действия (как и V max) в клетках с одинаковой пропускной способностью мембраны и характеристиками осевого сопротивления определяется главным образом амплитудой направленного внутрь тока, протекающего во время фазы нарастания потенциала действия. Это связано с тем, что локальные токи, проходящие через клетки непосредственно перед потенциалом действия, имеют большую величину при более быстром нарастании потенциала, поэтому мембранный потенциал в этих клетках раньше достигает порогового уровня, чем в случае токов меньшей величины (см. рис. 3.4). Конечно, эти локальные токи протекают через клеточную мембрану и сразу после прохождения распространяющегося потенциала действия, но они уже неспособны возбудить мембрану ввиду ее рефрактерности.

Рис. 3.5. Нормальный потенциал действия и реакции, вызванные стимулами на разных стадиях реполяризации.

Амплитуда и возрастание скорости ответов, вызванных во время реполяризации, зависят от уровня мембранного потенциала, на котором они возникают. Самые ранние ответы (а и б) возникают на столь низком уровне, что оказываются слишком слабыми и неспособными к распространению (градуальные или местные ответы). Ответ «в» представляет собой наиболее ранний из распространяющихся потенциалов действия, но его распространение происходит медленно ввиду незначительного возрастания скорости, а также низкой амплитуды. Ответ «г» появляется точно перед полной реполяризацией, скорость его усиления и амплитуда выше, чем при ответе «в», так как он возникает при более высоком мембранном потенциале; однако скорость его распространения становится ниже нормальной. Ответ «д» отмечается после полной реполяризации, поэтому его амплитуда и скорость деполяризации имеют нормальные значения; следовательно, он быстро распространяется. ПП - потенциал покоя.

Продолжительный рефрактерный период после возбуждения сердечных клеток обусловлен большой длительностью потенциала действия и вольтажной зависимостью механизма ворот натриевых каналов. За фазой нарастания потенциала действия следует период продолжительностью от сотни до нескольких сотен миллисекунд, в течение которого регенеративный ответ на повторный стимул отсутствует (рис. 3.5). Это так называемый абсолютный, или эффективный, рефрактерный период; обычно он охватывает плато (фаза 2) потенциала действия. Как описано выше, натриевые каналы инактивируются и остаются закрытыми во время такой поддерживающейся деполяризации. В ходе реполяризации потенциала действия (фаза 3) инактивация постепенно устраняется, так что доля каналов, способных снова активироваться, постоянно возрастает. Следовательно, с помощью стимула в начале реполяризации можно вызвать лишь небольшой входящий поток ионов натрия, однако по мере продолжения реполяризации потенциала действия такие потоки будут увеличиваться. Если некоторые из натриевых каналов остаются невозбудимыми, то вызванный входящий поток Na + может привести к регенеративной деполяризации и, следовательно, к возникновению потенциала действия. Однако скорость деполяризации, а значит, и скорость распространения потенциалов действия значительно снижены (см. рис. 3.5) и нормализуются только после полной реполяризации . Время, в течение которого повторный стимул способен вызвать такие «градуальные» потенциалы действия, называется относительным рефрактерным периодом. Вольтажная зависимость устранения инактивации изучалась Weidmann, установившим, что скорость повышения потенциала действия и возможный уровень, при котором этот потенциал вызывается, находятся в S-образной зависимости, известной также как кривая реактивности мембраны.

Низкая скорость нарастания потенциалов действия, вызванных в течение относительного рефрактерного периода, обусловливает их медленное распространение; такие потенциалы действия могут послужить причиной некоторых нарушений проведения, например задержки, затухания и блокирования, и даже способны вызвать циркуляцию возбуждения. Данные явления обсуждаются ниже в этой главе.

В нормальных сердечных клетках за входящим натриевым током, ответственным за быстрое нарастание потенциала действия, следует второй входящий ток, меньшей величины и более медленный, чем натриевый ток, который, по-видимому, переносится в основном ионами кальция . Этот ток обычно относят к «медленному входящему току» (хотя он является таковым только в сравнении с быстрым натриевым током; другие важные изменения, например наблюдаемые во время реполяризации, вероятно, замедляются); он протекает через каналы, которые в соответствии с характеристиками их проводимости, зависящей от времени и вольтажа, были названы «медленными каналами» (см. рис. 3.3) . Порог активации этой проводимости (т. е. когда начинают открываться активационные ворота - d) лежит между -30 и -40 мВ (сравните: от -60 до -70 мВ для натриевой проводимости) . Регенеративная деполяризация, обусловленная быстрым натриевым током, обычно активирует проводимость медленного входящего тока, поэтому в более поздний период нарастания потенциала действия ток течет по каналам обоих типов. Однако ток Са 2+ гораздо меньше максимального быстрого тока Na + , поэтому его вклад в потенциал действия весьма невелик до тех пор, пока быстрый ток Na + не станет достаточно инактивированным (т. е. после начального быстрого нарастания потенциала). Поскольку медленный входящий ток может инактивироваться лишь очень медленно, он вносит свой вклад в основном в фазу плато потенциала действия. Так, уровень плато смещается в сторону деполяризации, когда градиент электрохимического потенциала для Са 2+ увеличивается при повышении концентрации [Са 2+ ] 0 ; снижение [Са 2+ ] 0 вызывает смещение уровня плато в противоположную сторону . Однако в некоторых случаях может отмечаться вклад кальциевого тока в фазу нарастания потенциала действия. Например, на кривой нарастания потенциала действия в миокардиальных волокнах желудочка лягушки иногда наблюдается изгиб около 0 мВ, в точке, где первоначальная быстрая деполяризация уступает место более медленной деполяризации, которая продолжается до пика овершута потенциала действия. Как было показано, скорость более медленной деполяризации и величина овершута возрастают с повышением [Са 2+ ] 0 .

Кроме различной зависимости от мембранного потенциала и времени, эти два типа проводимости различаются и по своим фармакологическим характеристикам. Так, ток через быстрые каналы для Na + снижается под действием тетродотоксина (ТТХ) , тогда как медленный ток Са 2+ не поддается влиянию ТТХ , но усиливается под действием катехоламинов и угнетается ионами марганца , а также некоторыми препаратами, такими как верапамил и D-600 . Представляется весьма вероятным (по крайней мере в сердце лягушки), что большая часть кальция, необходимого для активации белков, способствующих каждому сокращению сердца, попадает в клетку во время потенциала действия через медленный канал для входящего тока. У млекопитающих доступным дополнительным источником Са 2+ для сердечных клеток служат его запасы в саркоплазматическом ретикулуме.

В тех случаях, когда имеет место разделение зарядов и положительные заряды расположены в одном месте, а отрицательные в другом, физики говорят о поляризации заряда. Физики употребляют термин по аналогии с разноименными магнитными силами, которые скапливаются на противоположных концах, или полюсах (название дано потому, что свободно двигающаяся намагниченная полоска указывает своими концами в стороны географических полюсов) полосового магнита.

В обсуждаемом случае мы имеем концентрацию положительных зарядов на одной стороне мембраны и концентрацию отрицательных зарядов на другой стороне мембраны, то есть мы можем говорить о поляризованной мембране.

Однако в любом случае, когда имеет место разделение зарядов, немедленно возникает и электрический потенциал. Потенциал является мерой силы, которая стремится сблизить разделенные заряды и ликвидировать поляризацию. Электрический потенциал поэтому называют также электродвижущей силой, которая сокращенно обозначается ЭДС.

Электрический потенциал называется потенциалом именно потому, что он в действительности не приводит в движение заряды, так как существует противодействующая сила, удерживающая противоположные электрические заряды от сближения. Эта сила будет существовать до тех пор, пока расходуется энергия па ее поддержание (что и происходит в клетках). Таким образом, сила, стремящаяся сблизить заряды, обладает лишь возможностью, или потенцией, сделать это, и такое сближение происходит только в том случае, когда энергия, затрачиваемая на разделение зарядов, ослабевает. Электрический потенциал измеряют в единицах, названных вольтами, в честь Вольта, человека, создавшего первую в мире электрическую батарею.

Физики сумели измерить электрический потенциал, существующий между двумя сторонами клеточной мембраны. Он оказался равным 0,07 вольт. Можно сказать также, что этот потенциал равен 70 милливольтам, так как милливольт равен одной тысячной вольта. Конечно, это очень маленький потенциал по сравнению со 120 вольтами (120 000 милливольт) напряжения в сети переменного тока или по сравнению с тысячами вольт напряжения в линиях электропередачи. Но это все же удивительный потенциал, учитывая материалы, которые имеет в своем распоряжении клетка для построения электрических систем.

Любая причина, прерывающая деятельность натриевого насоса, приведет к резкому выравниванию концентраций ионов натрия и калия по обе стороны мембраны. Это, в свою очередь, автоматически приведет к выравниванию зарядов. Таким образом, мембрана станет деполяризованной. Конечно, это происходит при повреждении или гибели клетки. Но существуют, правда, три вида стимулов, которые могут вызвать деполяризацию, не причиняя клетке никакого вреда (если, конечно, эти стимулы не слишком сильны). К таким лам относятся механические, химические и электрические.

Давление - это пример механического стимула. Давление на участок мембраны приводит к а расширению и (по пока не попятным причинам) вызовет в этом месте деполяризацию. Высокая температура приводит к расширению мембраны, холод сокращает ее, и эти механические изменения тоже вызывают деполяризацию.

К такому же результату приводит воздействие на мембрану некоторых химических соединений и воздействие на нее слабых электрических токов.

(В последнем случае причина деполяризации представляется наиболее очевидной. В конце концов, почему электрический феномен поляризации нельзя изменить с помощью приложенного извне электрического потенциала?)

Произошедшая в одном месте мембраны деполяризация служит стимулом для распространения деполяризации по мембране. Ион натрия, хлынувший в клетку в месте, где произошла деполяризация прекратилось действие натриевого насоса, вытесняет наружу ион калия. Ионы натрия меньше размерами и более подвижны, чем ионы калия. Поэтому в клетку входит больше ионов натрия, чем выходит из нее ионов калия. В результате кривая деполяризации пересекает нулевую отметку и поднимается выше. Клетка снова оказывается поляризованной, но с обратным знаком. На какой-то момент клеш приобретает внутренний положительный заряд, благодаря присутствию в ней избытка ионов натрия. На внешней стороне мембраны появляется маленький отрицательный заряд.

Противоположно направленная поляризация может служить электрическим стимулом, который парализует работу натриевого насоса в участках, примыкающих к месту первоначального стимула. Эти примыкающие участки поляризуются, потом происходит поляризация с обратным знаком и возникает деполяризация в более отдаленных участках. Таким образом, волна деполяризации прокатывается по всей мембране. В начальном участке поляризация с обратным знаком не может продолжаться долго. Ионы калия продолжают выходить из клетки, постепенно их поток уравнивается с потоком входящих ионов натрия. Положительный заряд внутри клетки исчезает. Это исчезновение обратного потенциала в какой-то степени реактивирует натриевый насос в этом месте мембраны. Ионы натрия начинают выходить из клетки, и в нее начинают проникать ионы калия. Данный участок мембраны вступает в фазу реполяризации. Так как эти события происходят во всех участках деполяризации мембраны, то вслед за волной деполяризации по мембране прокатывается волна реполяризации.

Между моментами деполяризации и полной ре-поляризации мембраны не отвечают на обычные стимулы. Этот период времени называется рефракторным периодом. Он длится очень короткое время малую долю секунды. Волна деполяризации, прошедшая через определенный участок мембраны, делает этот участок невосприимчивым к возбуждению. Предыдущий стимул становится в каком-то смысле единичным и изолированным. Как именно мельчайшие изменения зарядов, участвующие в деполяризации, реализуют такой ответ, неизвестно, но факт остается фактом - ответ мембраны на стимул изолирован и единичен. Если мышцу стимулировать в одном месте небольшим электрическим разрядом, то мышца сократится. Но сократится не только тот участок, к которому было приложено электрическое раздражение; сократится все мышечное волокно. Волна деполяризации проходит по мышечному волокну со скоростью от 0,5 до 3 метров в секунду, в зависимости от длины волокна, и этой скорости достаточно, чтобы создалось впечатление, что мышца сокращается, как одно целое.

Этот феномен поляризации-деполяризации-реполяризации присущ всем клеткам, но в некоторых он выражен больше. В процессе эволюции появились клетки, которые извлекли выгоды из этого явления. Эта специализация может пойти в двух направлениях. Во-первых, и это происходит весьма редко, могут развиться органы, которые способны создавать высокие электрические потенциалы. При стимуляции деполяризация реализуется не мышечным сокращением или другим физиологическим ответом, а возникновением электрического тока. Это не пустая трата энергии. Если стимул -это нападение врага, то электрический разряд может ранить или убить его.

Существует семь видов рыб (некоторые из них костистые, некоторые относятся к отряду хрящевых, являясь родственниками акул), специализированных именно в этом направлении. Самый живописный представитель - это рыба, которую в народе называют «электрическим угрем», а в науке весьма символическим именем - Electrophorus electricus. Электрический угорь - обитатель пресных вод, и встречается в северной части Южной Америки - в Ориноко, Амазонке и ее притоках. Строго говоря, эта рыба не родственница угрям, ее назвали так за длинный хвост, который составляет четыре пятых тела этого животного, длина которого составляет от 6 до 9 футов. Все обычные органы этой рыбы умещаются в передней части туловища длиной около 15 - 16 дюймов.

Более половины длинного хвоста занято последовательностью блоков модифицированных мышц, которые образуют «электрический орган». Каждая из этих мышц производит потенциал, который не превышает потенциал обычной мышцы. Но тысячи и тысячи элементов этой «батареи» соединены таким образом, что их потенциалы складываются. Отдохнувший электрический угорь способен накопить потенциал порядка 600 - 700 вольт и разряжать его со скоростью 300 раз в секунду. При утомлении этот показатель снижается до 50 раз в секунду, но такой темп угорь может выдержать в течение длительного времени. Электрический удар достаточно силен для того, чтобы убить мелкое животное, которыми питается эта рыба, или чтобы нанести чувствительное поражение животному более крупному, которое по ошибке вдруг решит съесть электрического угря.

Электрический орган - это великолепное оружие. Возможно, к такому электрошоку с удовольствием прибегли бы и другие животные, но эта батарея занимает слишком много места. Представьте себе, как мало животных имели бы крепкие клыки и когти, если бы они занимали половину массы их тела.

Второй тип специализации, предусматривающий использование электрических явлений, протекающих па клеточной мембране, заключается не в усилении потенциала, а в увеличении скорости распространения волны деполяризации. Возникают клетки с удлиненными отростками, которые представляют собой почти исключительно мембранные образования. Главная функция этих клеток - очень быстрая передача стимула от одной части тела к другой. Именно из таких клеток состоят нервы - те самые нервы, с рассмотрения которых началась эта глава.

В тех случаях, когда имеет место разделение зарядов и положительные заряды расположены в одном месте, а отрицательные в другом, физики говорят о поляризации заряда. Физики употребляют термин по аналогии с разноименными магнитными силами, которые скапливаются на противоположных концах, или полюсах (название дано потому, что свободно двигающаяся намагниченная полоска указывает своими концами в стороны географических полюсов) полосового магнита. В обсуждаемом случае мы имеем концентрацию положительных зарядов на одной стороне мембраны и концентрацию отрицательных зарядов на другой стороне мембраны, то есть мы можем говорить о поляризованной мембране.

Однако в любом случае, когда имеет место разделение зарядов, немедленно возникает и электрический потенциал. Потенциал является мерой силы, которая стремится сблизить разделенные заряды и ликвидировать поляризацию. Электрический потенциал поэтому называют также электродвижущей силой, которая сокращенно обозначается ЭДС.

Электрический потенциал называется потенциалом именно потому, что он в действительности не приводит в движение заряды, так как существует противодействующая сила, удерживающая противоположные электрические заряды от сближения. Эта сила будет существовать до тех пор, пока расходуется энергия па ее поддержание (что и происходит в клетках). Таким образом, сила, стремящаяся сблизить заряды, обладает лишь возможностью, или потенцией, сделать это, и такое сближение происходит только в том случае, когда энергия, затрачиваемая на разделение зарядов, ослабевает. Электрический потенциал измеряют в единицах, названных вольтами, в честь Вольта, человека, создавшего первую в мире электрическую батарею.

Физики сумели измерить электрический потенциал, существующий между двумя сторонами клеточной мембраны. Он оказался равным 0,07 вольт. Можно сказать также, что этот потенциал равен 70 милливольтам, так как милливольт равен одной тысячной вольта. Конечно, это очень маленький потенциал по сравнению со 120 вольтами (120 000 милливольт) напряжения в сети переменного тока или по сравнению с тысячами вольт напряжения в линиях электропередачи. Но это все же удивительный потенциал, учитывая материалы, которые имеет в своем распоряжении клетка для построения электрических систем.

Любая причина, прерывающая деятельность натриевого насоса, приведет к резкому выравниванию концентраций ионов натрия и калия по обе стороны мембраны. Это, в свою очередь, автоматически приведет к выравниванию зарядов. Таким образом, мембрана станет деполяризованной. Конечно, это происходит при повреждении или гибели клетки. Но существуют, правда, три вида стимулов, которые могут вызвать деполяризацию, не причиняя клетке никакого вреда (если, конечно, эти стимулы не слишком сильны). К таким лам относятся механические, химические и электрические.


Давление - это пример механического стимула. Давление на участок мембраны приводит к а расширению и (по пока не попятным причинам) вызовет в этом месте деполяризацию. Высокая температура приводит к расширению мембраны, холод сокращает ее, и эти механические изменения тоже вызывают деполяризацию.

К такому же результату приводит воздействие на мембрану некоторых химических соединений и воздействие на нее слабых электрических токов. (В последнем случае причина деполяризации представляется наиболее очевидной. В конце концов, почему электрический феномен поляризации нельзя изменить с помощью приложенного извне электрического потенциала?)

Произошедшая в одном месте мембраны деполяризация служит стимулом для распространения деполяризации по мембране. Ион натрия, хлынувший в клетку в месте, где произошла деполяризация прекратилось действие натриевого насоса, вытесняет наружу ион калия. Ионы натрия меньше размерами и более подвижны, чем ионы калия. Поэтому в клетку входит больше ионов натрия, чем выходит из нее ионов калия. В результате кривая деполяризации пересекает нулевую отметку и поднимается выше. Клетка снова оказывается поляризованной, но с обратным знаком. На какой-то момент клеш приобретает внутренний положительный заряд, благодаря присутствию в ней избытка ионов натрия. На внешней стороне мембраны появляется маленький отрицательный заряд.

Противоположно направленная поляризация может служить электрическим стимулом, который парализует работу натриевого насоса в участках, примыкающих к месту первоначального стимула. Эти примыкающие участки поляризуются, потом происходит поляризация с обратным знаком и возникает деполяризация в более отдаленных участках. Таким образом, волна деполяризации прокатывается по всей мембране. В начальном участке поляризация с обратным знаком не может продолжаться долго. Ионы калия продолжают выходить из клетки, постепенно их поток уравнивается с потоком входящих ионов натрия. Положительный заряд внутри клетки исчезает. Это исчезновение обратного потенциала в какой-то степени реактивирует натриевый насос в этом месте мембраны. Ионы натрия начинают выходить из клетки, и в нее начинают проникать ионы калия. Данный участок мембраны вступает в фазу реполяризации. Так как эти события происходят во всех участках деполяризации мембраны, то вслед за волной деполяризации по мембране прокатывается волна реполяризации.

Между моментами деполяризации и полной ре-поляризации мембраны не отвечают на обычные стимулы. Этот период времени называется рефракторным периодом. Он длится очень короткое время малую долю секунды. Волна деполяризации, прошедшая через определенный участок мембраны, делает этот участок невосприимчивым к возбуждению. Предыдущий стимул становится в каком-то смысле единичным и изолированным. Как именно мельчайшие изменения зарядов, участвующие в деполяризации, реализуют такой ответ, неизвестно, но факт остается фактом - ответ мембраны на стимул изолирован и единичен. Если мышцу стимулировать в одном месте небольшим электрическим разрядом, то мышца сократится. Но сократится не только тот участок, к которому было приложено электрическое раздражение; сократится все мышечное волокно. Волна деполяризации проходит по мышечному волокну со скоростью от 0,5 до 3 метров в секунду, в зависимости от длины волокна, и этой скорости достаточно, чтобы создалось впечатление, что мышца сокращается, как одно целое.

Этот феномен поляризации-деполяризации-реполяризации присущ всем клеткам, но в некоторых он выражен больше. В процессе эволюции появились клетки, которые извлекли выгоды из этого явления. Эта специализация может пойти в двух направлениях. Во-первых, и это происходит весьма редко, могут развиться органы, которые способны создавать высокие электрические потенциалы. При стимуляции деполяризация реализуется не мышечным сокращением или другим физиологическим ответом, а возникновением электрического тока. Это не пустая трата энергии. Если стимул -это нападение врага, то электрический разряд может ранить или убить его.

Существует семь видов рыб (некоторые из них костистые, некоторые относятся к отряду хрящевых, являясь родственниками акул), специализированных именно в этом направлении. Самый живописный представитель - это рыба, которую в народе называют «электрическим угрем», а в науке весьма символическим именем - Electrophorus electricus. Электрический угорь - обитатель пресных вод, и встречается в северной части Южной Америки - в Ориноко, Амазонке и ее притоках. Строго говоря, эта рыба не родственница угрям, ее назвали так за длинный хвост, который составляет четыре пятых тела этого животного, длина которого составляет от 6 до 9 футов. Все обычные органы этой рыбы умещаются в передней части туловища длиной около 15 - 16 дюймов.

Более половины длинного хвоста занято последовательностью блоков модифицированных мышц, которые образуют «электрический орган». Каждая из этих мышц производит потенциал, который не превышает потенциал обычной мышцы. Но тысячи и тысячи элементов этой «батареи» соединены таким образом, что их потенциалы складываются. Отдохнувший электрический угорь способен накопить потенциал порядка 600 - 700 вольт и разряжать его со скоростью 300 раз в секунду. При утомлении этот показатель снижается до 50 раз в секунду, но такой темп угорь может выдержать в течение длительного времени. Электрический удар достаточно силен для того, чтобы убить мелкое животное, которыми питается эта рыба, или чтобы нанести чувствительное поражение животному более крупному, которое по ошибке вдруг решит съесть электрического угря.

Электрический орган - это великолепное оружие. Возможно, к такому электрошоку с удовольствием прибегли бы и другие животные, но эта батарея занимает слишком много места. Представьте себе, как мало животных имели бы крепкие клыки и когти, если бы они занимали половину массы их тела.

Второй тип специализации, предусматривающий использование электрических явлений, протекающих па клеточной мембране, заключается не в усилении потенциала, а в увеличении скорости распространения волны деполяризации. Возникают клетки с удлиненными отростками, которые представляют собой почти исключительно мембранные образования. Главная функция этих клеток - очень быстрая передача стимула от одной части тела к другой. Именно из таких клеток состоят нервы - те самые нервы, с рассмотрения которых началась эта глава.

НЕЙРОН

Нерпы, которые мы можем наблюдать невооруженным глазом, конечно же не являются отдельными клетками. Это пучки нервных волокон, иногда в этих пучках содержится очень много волокон, каждое из которых представляет собой часть нервной клетки. Все волокна пучка идут в одном направлении и, ради удобства и экономии места, связаны между собой, хотя отдельные волокна могут выполнять совершенно разные функции. Точно так же отдельные изолированные электрические провода, выполняющие совершенно разные задачи, для удобства объединяют в один электрический кабель. Само нервное волокно является частью нервной клетки, которую также называют нейроном. Это греческое производное латинского слова «нерв». Греки эпохи Гиппократа приложили это слово к нервам в истинном смысле и к сухожилиям. Теперь этот термин обозначает исключительно индивидуальную нервную клетку. Основная часть нейрона - тело практически мало чем отличается от всех остальных клеток организма. Тело содержит ядро и цитоплазму. Самым большим отличием нервной клетки от прочих клеток является наличие длинных выростов из тела клетки. От большей части поверхности тела нервной клетки отходят выросты, которые ветвятся на протяжении. Эти ветвящиеся выросты напоминают крону дерева и называются дендритами (от греческого слова «дерево»).

На поверхности тела клетки есть одно место, из которого выходит один, особенно длинный, отросток, который не ветвится на всем своем (иногда огромном) протяжении. Этот отросток называется аксоном. Почему он так называется, я объясню позже. Именно аксонами представлены типичные нервные волокна нервного пучка. И хотя аксон микроскопически тонок, его длина может составить несколько футов, что представляется необычным, если учесть, что аксон - это всего лишь часть единственной нервной клетки.

Возникшая в какой-либо части нервной клетки деполяризация с большой скоростью распространяется по волокну. Волна деполяризации, распространяющаяся по отросткам нервной клетки, называется нервным импульсом. Импульс может распространяться по волокну в любом направлении; так, если нанести стимул на середину волокна, то импульс будет распространяться в обе стороны. Однако в живых системах практически всегда получается так, что импульсы распространяются по дендритам только в одну сторону - к телу клетки. По аксону же импульс всегда распространяется от тела клетки.

Скорость распространения импульса по нервному волокну была впервые измерена в 1852 году немецким ученым Германом Гельмгольцем. Для этого он наносил стимулы на нервное волокно па разных расстояниях от мышцы и регистрировал время, через которое мышца сокращалась. Если расстояние увеличивалось, то удлинялась и задержка, после которой наступало сокращение. Задержка соответствовала времени, которое требовалось импульсу, чтобы пройти дополнительное расстояние.

Довольно интересен тот факт, что за шесть лет до опыта Гельмгольца знаменитый немецкий физиолог Иоганнес Мюллер в припадке консерватизма, столь характерного для ученых на склоне их карьеры, категорически заявлял, что никто и никогда не сможет измерить скорость проведения импульса по нерву.

В разных волокнах скорость проведения импульса не одинакова. Во-первых, скорость, с которой импульс движется по аксону, грубо зависит от его толщины.

Чем толще аксон, тем больше скорость распространения импульса. В очень тонких волокнах импульс движется по ним довольно медленно, со скоростью двух метров в секунду и даже меньше. Не быстрее, чем, скажем, распространяется волна деполяризации по мышечным волокнам. Очевидно, чем быстрее должен реагировать организм на тот или иной стимул, тем желательнее высокая скорость проведения импульсов. Один из способов достижения такого состояния - это увеличение толщины нервных волокон. В теле человека самые тонкие волокна имеют диаметр 0,5 микрона (микрон - это одна тысячная часть миллиметра), а самые толстые - 20 микрон, то есть в 40 раз больше. Площадь поперечного сечения толстых волокон в 1600 раз больше площади поперечного сечения тонких волокон.

Можно подумать, что поскольку млекопитающие обладают лучше развитой нервной системой, чем другие группы животных, то нервные импульсы распространяются у них с наибольшей скоростью, а нервные волокна толще, чем у всех остальных биологических видов. Но в действительности это не так. У низших животных, тараканов, нервные волокна толще, чем у людей.

Самыми толстыми нервными волокнами обладают самые развитые из моллюсков - кальмары. Крупные кальмары вообще, вероятно, являются самыми развитыми и высокоорганизованными животными из всех беспозвоночных. Учитывая их физические размеры, мы не удивляемся тому, что им требуется высокая скорость проведения импульсов и очень толстые аксоны. Нервные волокна, идущие к мышцам кальмара, называются гигантскими аксонами и достигают в диаметре 1 миллиметра. Это в 50 раз больше диаметра самого толстого аксона млекопитающих, а по площади поперечного сечения аксоны кальмара превосходят аксоны млекопитающих в 2500 раз. Гигантские аксоны кальмара - это дар божий для нейрофизиологов, которые могут легко ставить на них опыты (например, измерять потенциалы на мембранах аксонов), что очень трудно делать на чрезвычайно тонких аксонах позвоночных.

Тем не менее, почему все-таки беспозвоночные превзошли позвоночных толщиной нервных волокон, хотя позвоночные обладают более развитой нервной системой?

Ответ заключается в том, что скорость проведения импульсов по нервам у позвоночных зависит не только от толщины аксонов. Позвоночные животные получили в свое распоряжение более изощренный способ повышения скорости проведения импульсов по аксонам.

У позвоночных нервные волокна на ранних стадиях развития организма попадают в окружение так называемых сателлитных клеток. Некоторые из этих клеток называются шванновскими (по имени немецкого зоолога Теодора Шваина, одного из основоположников клеточной теории жизни). Шванновские клетки обертываются вокруг аксона, образуя все более и более плотную спираль, одевая волокно жироподобной оболочкой, которая называется миелиновой оболочкой. В конечном счете шванковские клетки образуют вокруг аксона тонкую оболочку, называемую неврилеммой, которая, тем не менее, содержит ядра исходных шванновских клеток. (Кстати, сам Шванн и описал эти неврилеммы, которые иногда в его честь называют шванновской оболочкой. Мне кажется, что очень немузыкально и оскорбительно для памяти великого зоолога звучит термин, которым обозначают опухоль, исходящую из неврилеммы. Ее называют шванномой.)

Одна отдельная шванновская клетка окутывает только ограниченный участок аксона. В результате шванновские оболочки охватывают аксон отдельными секциями, между которыми расположены узкие участки, в которых миелиновая оболочка отсутствует. В результате под микроскопом аксон выглядит как связка сосисок. Участки, не покрытые миелином, сужения этой связки, называются перехватами Ранвье, в честь французского гистолога Луи Антуана Ранвье, который описал их в 1878 году. Таким образом, аксон похож на тонкий стержень, продетый сквозь последовательность цилиндров вдоль их осей. Axis на латинском языке означает «ось», отсюда происходит и название этого отростка нервной клетки. Суффикс -он присоединен, видимо, по аналогии со словом «нейрон».

Функция миелиновой оболочки не вполне ясна. Самое простое предположение относительно ее функции состоит в том, что она служит своеобразным изолятором нервного волокна, уменьшая утечку тока в окружающую среду. Такие утечки возрастают по мере того, как волокно становится тоньше, и присутствие изолятора позволяет волокну оставаться тонким без увеличения потери потенциала. Доказательства в пользу такого факта основаны на том, что миелин преимущественно состоит из липидных (жироподобных) материалов, которые действительно являются превосходными электрическими изоляторами. (Именно этот материал придает нерву белый цвет. Те; о нервной клетки окрашено в серый цвет.)

Однако если бы миелин выполнял только функции электрического изолятора, то с этой работой могли бы справиться и более простые жировые молекулы. Но как выяснилось, химический состав миелина очень сложен. Из каждых пяти молекул миелина две - молекулы холестерола, еще две - молекулы фосфолипидов (жировые молекулы, содержащие фосфор), а пятая молекула - цереброзид (сложная жироподобная молекула, содержащая сахар). Присутствуют в миелине и другие необычные вещества. Представляется весьма вероятным, что миелин выполняет в нервной системе отнюдь не только функции электрического изолятора.

Высказывалось предположение, что клетки миелиновой оболочки поддерживают целостность аксона, поскольку он вытянут на такое большое расстояние от тела нервной клетки, что, вполне вероятно, может утратить нормальную связь с ядром своей нервной клетки. Известно, что ядро жизненно необходимо для поддержания нормальной жизнедеятельности любой клетки и всех ее частей. Возможно, ядра шванновских клеток берут на себя функцию нянек, которые питают аксон на тех участках, которые они окутывают. Ведь аксоны нервов, даже лишенных миелина, покрыты топким слоем шванновских клеток, в которых, естественно, есть ядра.

Наконец, миелиновая оболочка каким-то образом ускоряет проведение импульса по нервному волокну. Волокно, покрытое миелиновой оболочкой, проводит импульс намного быстрее, чем волокно такого же диаметра, но лишенное миелиновой оболочки. Вот почему позвоночные выиграли эволюционную схватку с беспозвоночными. Они сохранили тонкие нервные волокна, но значительно увеличили скорость проведения импульсов по ним.

Миелинизированные нервные волокна млекопитающих проводят нервный импульс со скоростью около 100 м/с, или, если угодно, 225 миль в час. Это довольно приличная скорость. Самое большое расстрояние, которое приходится преодолевать импульсам в нервах млекопитающих, - это 25 метров, которые отделяют голову синего кита от его хвоста. Нервный импульс проходит этот неблизкий путь за 0,3 с. Расстояние от головы до большого пальца ноги у человека импульс по миелинизированному волокну проходит за одну пятидесятую долю секунды. В том, что касается скоростей передачи информации в нервной и эндокринной системах, видна огромная и вполне очевидная разница.

При рождении ребенка процесс мнелинизации нервов в его организме еще не завершен, и различные функции не развиваются должным образом до тех пор, пока нужные нервы не будут миелинизированы. Так, ребенок сначала ничего не видит. Функция зрения устанавливается только после миелинизации зрительного нерва, которая, к счастью, не заставлет себя ждать. Точно так же нервы, идущие к мышцам рук и ног, остаются не миелинизированными в течение первого года жизни, поэтому координация движений, необходимая для самостоятельного передвижения, устанавливается только к этому времени.

Иногда взрослые люди страдают так называемой «демилиенизирующей болезнью», при которой происходит дегенерация участков миелина с последующей утратой функции соответствующего нервного волокна. Лучше всего изучено одно из таких заболевании, известное как рассеянный склероз. Такое название дано этой болезни потому, что при ней в различных участках нервной системы появляются очаги дегенерации миелина с замещением его более плотной рубцовой тканью. Такая демиелинизация может развиться в результате действия на миелин какого-то белка, присутствующего в крови больного. Представляется, что этот белок является антителом, представителем класса веществ, которые в норме обычно взаимодействуют только с чужеродными белками, но часто становятся причиной симптомов состояния, которое мы знаем как аллергию. По сути дела, у больного рассеянным склерозом развивается аллергия к самому себе, и эта болезнь, быть может, является примером аутоаллергического заболевания. Поскольку чаще всего поражаются чувствительные нервы, то самыми распространенными симптомами рассеянного склероза являются двоение в глазах, утрата тактильной чувствительности и другие расстройства чувствительности. Рассеянный склероз чаще всего поражает людей в возрасте от 20 до 40 лет. Болезнь может прогрессировать, то есть могут поражаться все новые и новые нервные волокна, и в конце концов наступает смерть. Однако прогрессирование заболевания может быть медленным, и многие больные живут больше десяти лет с момента установления диагноза.

Вся нервная деятельность успешно функционирует благодаря чередованию фаз покоя и возбудимости. Сбои в системе поляризации нарушают электрическую проводимость волокон. Но кроме нервных волокон есть и другие возбудимые ткани — эндокринная и мышечная.

Но мы рассмотрим особенности проводимых тканей, и на примере процесса возбуждения органических клеток расскажем о значении критического уровня деполяризации. Физиология нервной деятельности тесно связана с показателями электрического заряда внутри и снаружи нервной клетки.

Если один электрод присоединить к внешней оболочке аксона, а другой - к его внутренней части, то видна налицо разность потенциалов. Электрическая активность нервных проводящих путей основана на этой разности.

Что такое потенциал покоя и потенциал действия?

Все клетки нервной системы поляризованы, то есть имеют разный электрический заряд внутри и снаружи специальной мембраны. Нервная клетка всегда имеет свою липопротеиновую мембрану, имеющую функцию биоэлектрического изолятора. Благодаря мембранам создается потенциал покоя в клетке, который необходим для последующей активации.

Потенциал покоя поддерживается путем переноса ионов. Выход ионов калия и вход хлора увеличивает потенциал мембранного покоя.

Потенциал действия накапливается в фазе деполяризации, то есть подъема электрического заряда.

Фазы потенциала действия. Физиология

Итак, деполяризация в физиологии — это снижение мембранного потенциала. Деполяризация основа возникновения возбудимости, то есть потенциала действия для нервной клетки. При достижении критического уровня деполяризации никакой, даже сильный раздражитель не способен вызвать реакции нервных клеток. Натрия при этом очень много внутри аксона.

Сразу после этой стадии следует фаза относительной возбудимости. Ответ уже возможен, но лишь на сильный сигнал-раздражитель. Относительная возбудимость медленно переходит в фазу экзальтации. Что такое экзальтация? Это пик возбудимости тканей.

Все это время натриевые каналы активации закрыты. А их открытие произойдет, только когда разрядится. Реполяризация нужна для восстановления отрицательного заряда внутри волокна.

Что означает критический уровень деполяризации (КУД)?

Итак, возбудимость, это в физиологии способность клетки или ткани отреагировать на раздражитель и генерировать какой-то импульс. Как мы выяснили, для работы клеткам нужен определенный заряд — поляризация. Нарастание заряда от минуса к плюсу называется деполяризацией.

После деполяризации всегда идет реполяризация. Заряд внутри после фазы возбуждения снова должен стать отрицательным, чтобы клетка могла подготовиться к следующей реакции.

Когда показания вольтметра зафиксированы на отметке 80 - покоя. Она наступает после окончания реполяризации, а если прибор показывает положительное значение (больше 0), значит, обратная реполяризации фаза, приближается к максимальному уровню — критическому уровню деполяризации.

Как передаются импульсы от нервных клеток к мышцам?

Электрические импульсы, возникшие при возбуждении мембраны, передаются по нервным волокнам с большой скоростью. Скорость сигнала объясняется строение аксона. Аксон частично обволакивается облочкой. А между участками с миелином находятся перехваты Ранвье.

Благодаря такому устройству нервного волокна положительный заряд чередуется с отрицательным, и деполяризационный ток практически единовременно распространяется вдоль всей длины аксона. Сигнал о сокращении доходит до мышцы в доли секунды. Такой показатель, как критический уровень деполяризации мембраны означает ту отметку, при которой достигается пиковый потенциал действия. После сокращения мышцы вдоль всего аксона запускается уже реполяризация.

Что происходит при деполяризации?

Что значит такой показатель, как критический уровень деполяризации? Это в физиологии означает, что нервные клетки уже готовы к работе. Исправная работа целого органа зависит от нормальной, своевременной смены фаз потенциала действия.

Критический уровень (КУД) равен приблизительно 40-50 Мв. В это время электрическое поле вокруг мембраны уменьшается. напрямую зависит от того, сколько натриевых каналов клетки открыто. Клетка в это время еще не готова к ответу, но собирает электрический потенциал. Этот период имеет название абсолютная рефрактерность. Длится фаза всего 0,004 с в нервных клетках, а в кардиомиоцитах - 0,004 с.

После прохождения критического уровня деполяризации наступает супервозбудимость. Нервные клетки могут дать ответ даже на действие подпорогового раздражителя, то есть относительно слабого воздействие среды.

Функции натриевых и калиевых каналов

Итак, важный участник процессов деполяризации и реполяризации белковый ионовый канал. Разберемся, что подразумевает под собой это понятие. Ионные каналы — это находящиеся внутри плазменной оболочки белковые макромолекулы. Когда они открыты, через них могут проходить ионны неорганического происхождения. Белковые каналы имеют фильтр. Через натриевый проток проходит только натрий, через калиевый — только этот элемент.

Эти электроуправляемые каналы имеют двое ворот: одни активационные, обладают свойством пропускать ионы, другие инактивационные. В то время, когда мембранный потенциал покоя равен -90 мВ, ворота закрыты, но при начале деполяризации, натриевые каналы медленно открываются. Увеличение потенциала приводит к резкому закрытию створок протока.

Фактором, который влияет на активацию каналов, является возбудимость мембраны клетки. Под действием электрической возбудимости и запускаются 2 вида ионовых рецепторов:

  • запускается действие лиганд рецепторов — для хемозависимых каналов;
  • электрический сигнал подается для электроуправляемых каналов.

При достижении критического уровня деполяризации мембраны клетки рецепторы дают сигнал о том, что все натриевые каналы нужно закрыть, а калиевые начинают открываться.

Натриево-калиевый насос

Процессы передачи импульса возбуждения везде проходят благодаря электрической поляризации, осуществляемой за счет движения ионов натрия и калия. Движение элементов происходит на основе принципа ионов - 3 Na + внутрь и 2 К + наружу. Этот механизм обмена называется натриево-калиевым насосом.

Деполяризация кардиомиоцитов. Фазы сокращения сердца

Сердечные циклы сокращений также связаны с электрической деполяризацией проводимых путей. Сигнал о сокращении всегда исходит от СА-клеток, находящихся в правом предсердии, и распространяется по проводящим путям Гисса в пучок Тореля и Бахмана в левое предсердие. Правые и левые отростки пучка Гисса передают сигнал в желудочки сердца.

Нервные клетки быстрее деполяризуются и переносят сигнал благодаря наличию но мышечные ткани также постепенно деполяризуются. То есть их заряд из отрицательного превращается в положительный. Эта фаза сердечного цикла называется диастолой. Все клетки тут соединены между собой и действуют как один комплекс, поскольку работа сердца должна быть максимально скоординирована.

Когда наступает критический уровень деполяризации стенок правого и левого желудочков, генерируется выброс энергии — происходит сокращение сердца. Затем все клетки реполяризуются и готовятся к новому сокращению.

Депрессия Вериго

В 1889 году описано явление в физиологии, которое называется католической депрессией Вериго. Критический уровень деполяризации — это уровень деполяризации, при котором все натриевые каналы уже инактивированы, а вместо них работают калиевые. Если степень тока еще больше увеличивается, тогда значительно снижается возбудимость нервного волокна. А критический уровень деполяризации при действии раздражителей зашкаливает.

Во время депрессии Вериго скорость проведения возбуждения понижается, и, наконец, совсем спадает. Клетка начинает адаптироваться за счет изменения функциональных особенностей.

Адаптационный механизм

Бывает, при некоторых условиях деполяризующий ток долго не переключается. Это свойственно сенсорным волокнам. Постепенное длительное повышение такого тока сверх нормы в 50 мВ приводит к увеличению частоты электронных импульсов.

В ответ на такие сигналы повышается проводимость калиевой мембраны. Активируются более медленные каналы. В итоге возникает способность нервной ткани к повторным ответам. Это называется адаптацией нервных волокон.

При адаптации вместо большого количества коротких сигналов клетки начинают аккумулировать и отдавать одиночный сильный потенциал. А интервалы между двумя реакциями увеличиваются.

Электрический импульс, распространяющийся по сердцу и запускающий каждый цикл сокращений, называется потенциалом действия; он представляет собой волну кратковременной деполяризации, во время которой внутриклеточный потенциал поочередно в каждой клетке становится на короткое время положительным, а затем возвращается к своему исходному отрицательному уровню. Изменения нормального сердечного потенциала действия имеют характерное развитие во времени, которое для удобства подразделено на следующие фазы: фаза 0 - начальная быстрая деполяризация мембраны; фаза 1 - быстрая, но неполная реполяризация; фаза 2 - плато, или продолжительная деполяризация, характерная для потенциала действия сердечных клеток; фаза 3 - конечная быстрая реполяризация; фаза 4 - период диастолы.

При потенциале действия внутриклеточный потенциал становится положительным, так как возбужденная мембрана временно приобретает большую проницаемость для Na + (по сравнению с К +), поэтому мембранный потенциал на какое-то время приближается по величине к потенциалу равновесия ионов натрия (E Na)- Е N а можно определить, используя отношение Нернста; при внеклеточной и внутриклеточной концентрации Na + 150 и 10 мМ соответственно он составит:

Однако повышенная проницаемость для Na + сохраняется лишь непродолжительное время, так что мембранный потенциал не достигает E Na и после окончания потенциала действия возвращается к уровню покоя.

Указанные выше изменения проницаемости, вызывающие развитие фазы деполяризации потенциала действия, возникают вследствие открытия и закрытия особых мембранных каналов, или пор, через которые легко проходят ионы натрия. Как полагают, работа ворот регулирует открытие и закрытие отдельных каналов, которые могут существовать по меньшей мере в трех конформациях - открытой, закрытой и инактивированной. Одни ворота, соответствующие активационной переменной m в описании Ходжкина - Хаксли ионных потоков натрия в мембране гигантского аксона кальмара, быстро перемещаются, открывая канал, когда мембрана внезапно деполяризуется под действием стимула. Другие ворота, соответствующие инактивационной переменной h в описании Ходжкина - Хаксли, при деполяризации движутся медленнее, и их функция заключается в закрытии канала (рис. 3.3). Как установившееся распределение ворот в пределах системы каналов, так и скорость их перехода из одного положения в другое зависят от уровня мембранного потенциала. Поэтому для описания мембранной проводимости Na + используются термины зависимый от времени и потенциалозависимый.

Если мембрану в покое внезапно деполяризовать до уровня положительного потенциала (например, в эксперименте по фиксации потенциала), то активационные ворота быстро изменят свое положение, чтобы открыть натриевые каналы, а затем инактивационные ворота медленно их закроют (рис. 3.3). Слово медленно означает здесь, что на инактивацию уходит несколько миллисекунд, тогда как активация происходит в доли миллисекунды. Ворота остаются в указанных положениях до тех пор, пока мембранный потенциал снова не изменится, и для того чтобы все ворота вернулись к исходному состоянию покоя, мембрана должна быть полностью реполяризована до уровня высокого отрицательного потенциала. Если мембрана реполяризуется лишь до невысокого уровня отрицательного потенциала, то некоторые инактивационные ворота останутся закрытыми и максимальное число доступных натриевых каналов, способных открыться при последующей деполяризации, сократится. (Электрическая активность сердечных клеток, в которых натриевые каналы полностью инактивированы, будет обсуждаться ниже.) Полная реполяризация мембраны в конце нормального потенциала действия обеспечивает возврат всех ворот к исходному состоянию и, следовательно, их готовность к следующему потенциалу действия.

Рис. 3.3. Схематическое изображение мембранных каналов для входящих потоков ионов при потенциале покоя, а также при активации и инактивации.

Слева показана последовательность состояний канала при нормальном потенциале покоя -90 мВ. В покое инактивационные ворота как Na + -канала (h), так и медленного Ca 2+ /Na + -канала (f) открыты. Во время активации при возбуждении клетки т-ворота Na + -канала открываются и входящий поток ионов Na + деполяризует клетку, что приводит к нарастанию потенциала действия (график внизу). Затем h-ворота закрываются, инактивируя таким образом проводимость Na + . При нарастании потенциала действия мембранный потенциал превышает более положительный порог потенциала медленных каналов; их активационные ворота (d) при этом открываются и ионы Ca 2+ и Na + поступают в клетку, вызывая развитие фазы плато потенциала действия. Ворота f, инактивирующие Ca 2+ /Na + -каналы, закрываются гораздо медленнее, чем ворота h, которые инактивируют Na-каналы. На центральном фрагменте показано поведение канала при снижении потенциала покоя до менее чем -60 мВ. Большинство инактивационных ворот Na-канала остается закрытым до тех пор, пока мембрана деполяризована; возникающий при стимуляции клетки входящий поток Na + слишком мал, чтобы вызвать развитие потенциала действия. Однако инактивационные ворота (f) медленных каналов при этом не закрываются и, как показано на фрагменте справа, при достаточном возбуждении клетки, позволяющем открыть медленные каналы и пропустить медленно входящие потоки ионов, возможно ответное медленное развитие потенциала действия.

Рис. 3.4. Пороговый потенциал при возбуждении сердечной клетки.

Слева - потенциал действия, возникающий на уровне потенциала покоя, составляющем -90 мВ; это происходит при возбуждении клетки поступающим импульсом или каким-либо подпороговым стимулом, быстро понижающим мембранный потенциал до значений, лежащих ниже порогового уровня в - 65 мВ. Справа - эффекты двух подпороговых и порогового стимулов. Подпороговые стимулы (а и б) не дают снижения мембранного потенциала до порогового уровня; следовательно, потенциал действия не возникает. Пороговый стимул (в) снижает мембранный потенциал точно до порогового уровня, на котором затем возникает потенциал действия.

Быстрая деполяризация в начале потенциала действия вызывается мощным входящим потоком ионов натрия, поступающих внутрь клетки (соответственно градиенту их электрохимического потенциала) через открытые натриевые каналы. Однако прежде всего натриевые каналы должны быть эффективно открыты, для чего требуется быстрая деполяризация достаточно большой площади мембраны до необходимого уровня, называемого пороговым потенциалом (рис. 3.4). В эксперименте этого можно достичь, пропуская через мембрану ток из внешнего источника и используя внеклеточный или внутриклеточный стимулирующий электрод. В естественных условиях той же цели служат локальные токи, протекающие через мембрану непосредственно перед распространяющимся потенциалом действия. При пороговом потенциале достаточное количество натриевых каналов оказывается открытым, что обеспечивает необходимую амплитуду входящего натриевого тока и, следовательно, дальнейшую деполяризацию мембраны; в свою очередь деполяризация вызывает открытие большего числа каналов, приводя к увеличению входящего потока ионов, так что процесс деполяризации становится регенеративным. Скорость регенеративной деполяризации (или нарастания потенциала действия) зависит от силы входящего натриевого тока, которая в свою очередь определяется такими факторами, как величина градиента электрохимического потенциала Na + и количество доступных (или неинактивированных) натриевых каналов. В волокнах Пуркинье максимальная скорость деполяризации при развитии потенциала действия, обозначаемая как dV / dt max или V max , достигает примерно 500 В/с, и если бы такая скорость поддерживалась в течение всей фазы деполяризации от -90 мВ до +30 мВ, то изменение потенциала на 120 мВ заняло бы около 0,25 мс. Максимальная скорость деполяризации волокон рабочего миокарда желудочков составляет примерно 200 В/с, а мышечных волокон предсердий-от 100 до 200 В/с. (Фаза деполяризации потенциала действия в клетках синусового и атриовентрикулярного узлов существенно отличается от только что описанной и будет обсуждаться отдельно; см. ниже.)

Потенциалы действия с такой высокой скоростью нарастания (их часто называют быстрыми ответами) быстро распространяются по сердцу. Скорость распространения потенциала действия (как и V max) в клетках с одинаковой пропускной способностью мембраны и характеристиками осевого сопротивления определяется главным образом амплитудой направленного внутрь тока, протекающего во время фазы нарастания потенциала действия. Это связано с тем, что локальные токи, проходящие через клетки непосредственно перед потенциалом действия, имеют большую величину при более быстром нарастании потенциала, поэтому мембранный потенциал в этих клетках раньше достигает порогового уровня, чем в случае токов меньшей величины (см. рис. 3.4). Конечно, эти локальные токи протекают через клеточную мембрану и сразу после прохождения распространяющегося потенциала действия, но они уже неспособны возбудить мембрану ввиду ее рефрактерности.

Рис. 3.5. Нормальный потенциал действия и реакции, вызванные стимулами на разных стадиях реполяризации.

Амплитуда и возрастание скорости ответов, вызванных во время реполяризации, зависят от уровня мембранного потенциала, на котором они возникают. Самые ранние ответы (а и б) возникают на столь низком уровне, что оказываются слишком слабыми и неспособными к распространению (градуальные или местные ответы). Ответ в представляет собой наиболее ранний из распространяющихся потенциалов действия, но его распространение происходит медленно ввиду незначительного возрастания скорости, а также низкой амплитуды. Ответ г появляется точно перед полной реполяризацией, скорость его усиления и амплитуда выше, чем при ответе в, так как он возникает при более высоком мембранном потенциале; однако скорость его распространения становится ниже нормальной. Ответ д отмечается после полной реполяризации, поэтому его амплитуда и скорость деполяризации имеют нормальные значения; следовательно, он быстро распространяется. ПП - потенциал покоя.

Продолжительный рефрактерный период после возбуждения сердечных клеток обусловлен большой длительностью потенциала действия и вольтажной зависимостью механизма ворот натриевых каналов. За фазой нарастания потенциала действия следует период продолжительностью от сотни до нескольких сотен миллисекунд, в течение которого регенеративный ответ на повторный стимул отсутствует (рис. 3.5). Это так называемый абсолютный, или эффективный, рефрактерный период; обычно он охватывает плато (фаза 2) потенциала действия. Как описано выше, натриевые каналы инактивируются и остаются закрытыми во время такой поддерживающейся деполяризации. В ходе реполяризации потенциала действия (фаза 3) инактивация постепенно устраняется, так что доля каналов, способных снова активироваться, постоянно возрастает. Следовательно, с помощью стимула в начале реполяризации можно вызвать лишь небольшой входящий поток ионов натрия, однако по мере продолжения реполяризации потенциала действия такие потоки будут увеличиваться. Если некоторые из натриевых каналов остаются невозбудимыми, то вызванный входящий поток Na + может привести к регенеративной деполяризации и, следовательно, к возникновению потенциала действия. Однако скорость деполяризации, а значит, и скорость распространения потенциалов действия значительно снижены (см. рис. 3.5) и нормализуются только после полной реполяризации. Время, в течение которого повторный стимул способен вызвать такие градуальные потенциалы действия, называется относительным рефрактерным периодом. Вольтажная зависимость устранения инактивации изучалась Weidmann , установившим, что скорость повышения потенциала действия и возможный уровень, при котором этот потенциал вызывается, находятся в S -образной зависимости, известной также как кривая реактивности мембраны.

Низкая скорость нарастания потенциалов действия, вызванных в течение относительного рефрактерного периода, обусловливает их медленное распространение; такие потенциалы действия могут послужить причиной некоторых нарушений проведения, например задержки, затухания и блокирования, и даже способны вызвать циркуляцию возбуждения. Данные явления обсуждаются ниже в этой главе.

В нормальных сердечных клетках за входящим натриевым током, ответственным за быстрое нарастание потенциала действия, следует второй входящий ток, меньшей величины и более медленный, чем натриевый ток, который, по-видимому, переносится в основном ионами кальция. Этот ток обычно относят к медленному входящему току (хотя он является таковым только в сравнении с быстрым натриевым током; другие важные изменения, например наблюдаемые во время реполяризации, вероятно, замедляются); он протекает через каналы, которые в соответствии с характеристиками их проводимости, зависящей от времени и вольтажа, были названы медленными каналами (см. рис. 3.3) . Порог активации этой проводимости (т. е. когда начинают открываться активационные ворота - d) лежит между -30 и -40 мВ (сравните: от -60 до -70 мВ для натриевой проводимости) . Регенеративная деполяризация, обусловленная быстрым натриевым током, обычно активирует проводимость медленного входящего тока, поэтому в более поздний период нарастания потенциала действия ток течет по каналам обоих типов. Однако ток Са 2+ гораздо меньше максимального быстрого тока Na + , поэтому его вклад в потенциал действия весьма невелик до тех пор, пока быстрый ток Na + не станет достаточно инактивированным (т. е. после начального быстрого нарастания потенциала). Поскольку медленный входящий ток может инактивироваться лишь очень медленно, он вносит свой вклад в основном в фазу плато потенциала действия. Так, уровень плато смещается в сторону деполяризации, когда градиент электрохимического потенциала для Са 2+ увеличивается при повышении концентрации 0 ; снижение 0 вызывает смещение уровня плато в противоположную сторону. Однако в некоторых случаях может отмечаться вклад кальциевого тока в фазу нарастания потенциала действия. Например, на кривой нарастания потенциала действия в миокардиальных волокнах желудочка лягушки иногда наблюдается изгиб около 0 мВ, в точке, где первоначальная быстрая деполяризация уступает место более медленной деполяризации, которая продолжается до пика овершута потенциала действия. Как было показано, скорость более медленной деполяризации и величина овершута возрастают с повышением 0 .

Кроме различной зависимости от мембранного потенциала и времени, эти два типа проводимости различаются и по своим фармакологическим характеристикам. Так, ток через быстрые каналы для Na + снижается под действием тетродотоксина (ТТХ) , тогда как медленный ток Са 2+ не поддается влиянию ТТХ, но усиливается под действием катехоламинов и угнетается ионами марганца, а также некоторыми препаратами, такими как верапамил и D -600 . Представляется весьма вероятным (по крайней мере в сердце лягушки), что большая часть кальция, необходимого для активации белков, способствующих каждому сокращению сердца, попадает в клетку во время потенциала действия через медленный канал для входящего тока. У млекопитающих доступным дополнительным источником Са 2+ для сердечных клеток служат его запасы в саркоплазматическом ретикулуме.