Нейрофизиологическое исследование функциональных возможностей головного мозга. Лекция: Методы нейрофизиологических исследований. Электрическая активность головного мозга. Современные параклинические методы обследования

НЕЙРОФИЗИОЛОГИЧЕСКОЕ ОБСЛЕДОВАНИЕ

К методам нейрофизиологического обследования относятся электроэнцефалография (ЭЭГ), реоэнцефалография (РЭГ), магнитоэнцефалография (МЭГ), вызванные потенциалы (ВП).

Электроэнцефалография. Это метод изучения особенностей функционирования мозга с использованием записи биотоков, представляющих алгебраическую сумму внеклеточных электрических полей, возбуждающих и тормозящих постсинаптических потенциалов корковых нейронов, что отражает происходящие в них процессы метаболизма. Эти биотоки чрезвычайно слабы (сила тока 10-15 мкВ), поэтому для их регистрации используют усилители. ЭЭГ отражает совместную активность большого числа нейронов, и по ее картине можно судить о работе различных участков мозговой сети, расположенной под электродами. Особую важность ЭЭГ представляет для диагностики эпилепсии, очаговых органических поражений мозга. При эпилепсии выявляются острые волны, пики, комплексы «пик - волна» и другие проявления судорожной активности. В ряде случаев такие комплексы регистрируются у лиц, которые никогда не имели судорожных припадков, но при этом риск их возникновения достаточно высок («скрытая эпилепсия»). Регистрируются и такие случаи, когда при наличии у больных припадков судорожная активность на ЭЭГ отсутствует. Ее выявлению способствует гипервентиляция, которая достигается глубокими вдохами и выдохами в течение 1-2 мин. Если больные принимают противосудорожные средства, судорожная готовность подавляется. При органических поражениях мозга без припадков на ЭЭГ отмечаются умеренные диффузные изменения биоэлектрической активности мозга.

Реоэнцефалография. РЭГ используется с целью изучения особенностей мозгового кровообращения, его патологии и служит для измерения сопротивления между электродами, которые особым образом расположены на поверхности черепа. Это сопротивление, как считается, обусловлено главным образом внутричерепной гемодинамикой. Измерение проводится слабым переменным током (от 1 до 10 мА) высокой частоты. По характеру кривой РЭГ - скорости нарастания пульсовой волны, наличию и положению дикротического зубца, межполушарной асимметрии и форме РЭГ в разных отведениях - можно косвенно судить о кровоснабжении различных зон мозга и состоянии сосудистого тонуса. В некоторых случаях РЭГ позволяет диагностировать последствия закрытой черепно-мозговой травмы или геморрагического инсульта. Диагностике помогают разработанные компьютерные программы для автоматического многоканального анализа РЭГ и получение данных в наглядной графической форме.

Магнитоэнцефалография. МЭГ - бесконтактный метод исследования функции мозга с регистрацией сверхслабых магнитных полей, которые возникают в результате протекания в головном мозге электрических токов. Особенностью магнитного поля является то, что череп и мозговые оболочки практически не оказывают влияния на его величину, они «прозрачны» для магнитных силовых линий. Это дает возможность регистрировать активность не только поверхностно расположенных корковых структур (как в случае ЭЭГ), но и глубоких отделов мозговой ткани с достаточно высоким отношением показателей сигнал/шум. Для МЭГ впервые был разработан математический аппарат и созданы программные средства определения локализации дипольного источника в объеме мозга, которые затем модифицировали для анализа ЭЭГ. Поэтому МЭГ достаточно эффективна для точного определения внутримозговой локализации эпилептических очагов, тем более что теперь созданы многоканальные МЭГ-установки. МЭГ значительно дополняет данные ЭЭГ.

Метод вызванных потенциалов. ВП - это кратковременные изменения электрической активности головного мозга, возникающие в ответ на сенсорную стимуляцию. Амплитуда единичных ВП настолько мала, что они практически не выделяются на фоновой ЭЭГ. Для их определения и выявления используется метод усреднения стимулов с помощью специализированных лабораторных ЭВМ. В зависимости от модальности сенсорных раздражителей различают зрительные ВП (ЗВП) на вспышку света, слуховые ВП (СВП) и стволовые ВП (СтВП) - на звуковой щелчок, а также соматосенсорные ВП (ССВП) - на электростимуляцию кожи или нервов конечностей. Усредненный ВП - это полифазный комплекс, отдельные компоненты которого имеют определенные амплитудные соотношения и значения пиковой латентности. Различают направленные вверх негативные волны (N1, N2) и направленные вниз позитивные волны (P1, Р2, РЗ). Для большинства ВП известна внутримозговая локализация генераторов каждого из компонентов, причем наиболее коротколатентные (до 50 мс) комплексы генерируются на уровне рецепторов и стволовых ядер, а среднелатентные (50-150 мс) и длиннолатентные (более 200 мс) - на уровне корковых проекций анализатора. В психиатрической практике чаще используется ЗВП и СВП, а также так называемые ВП, связанные с событием (ERP), которые называют когнитивными (более 250 мс).

Нейрофизиология - это раздел физиологии, который занимается изучением функций нервной системы и нейронов, являющихся её основными структурными единицами. Она тесным образом связана с психологией, этологией, нейроанатомией, а также со многими другими науками, изучающими мозг. Впрочем, это общее определение. Стоит его расширить и обратить внимание на другие аспекты, касающиеся данной темы. А их немало.

Немного истории

Именно в XVII веке были выдвинуты первые представления о таком (ещё не существовавшем тогда) научном разделе, как нейрофизиология. Развития её могло и не быть, если бы не накопления сведений о гистологическом и анатомическом Эксперименты по изучению нового медицинского раздела начались в XIX веке - до этого были лишь теории. Первые из которых выдвигал Р. Декарт.

Правда, изначально эксперименты были не особо гуманными. Первым делом учёным (Ч. Беллу и Ф. Мажанди) удалось выяснить, что после перерезки задних спинномозговых корешков пропадает чувствительность. А если то же самое проделать и с передними - пропадёт способность двигаться.

Но наиболее известный нейрофизиологический эксперимент (который, кстати, известен каждому из нас) провёл И. П. Павлов. Именно он открыл условные рефлексы, что дало доступ к объективной регистрации тех нервных процессов, которые протекают в коре головного мозга. Всё это - нейрофизиология. о которой сейчас и шла речь, была определена в ходе экспериментов, проводимых в рамках данного медицинского раздела.

Современные исследования

У нейрофизиологии, в отличие от неврологии, нейробиологии и всех других наук, с которыми она имеет связь, есть одно отличие. И заключается оно в следующем: данный раздел занимается непосредственно теоретической разработкой всей неврологии в целом.

В наше время наука, как и медицина, шагнула очень далеко. И на современном этапе все функции нейрофизиологии выстраиваются на изучении и понимании интегративной деятельности нашей нервной системы. Что происходит при помощи вживлённых и поверхностных электродов, а также температурных раздражителей ЦНС.

Вместе с тем продолжается развитие изучения клеточных механизмов - оно тоже подразумевает использование современной микроэлектродной техники. Это довольно-таки сложный и кропотливый процесс, ведь для того чтобы начать исследование, необходимо «вживить» микроэлектрод внутрь нейрона. Только так на них будет поступать информация, касающаяся развития процессов торможения и возбуждения.

Электронная микроскопия

Она также используется учеными в наше время. даёт возможность изучить, как именно кодируется и передаётся информация в нашем мозгу. Основы нейрофизиологии изучены, и благодаря современным технологиям уже существуют целые центры, в которых ученые моделируют отдельные нервные сети и нейроны. Соответственно, сегодня нейрофизиология - это ещё и наука, связанная с кибернетикой, химией и бионикой. И прогресс очевиден - в наши дни диагностика и последующее лечение эпилепсии, рассеянного склероза, инсульта и нарушений двигательного аппарата являются реальностью.

Клинические эксперименты

Нейрофизиология мозга человека (как головного, так и спинного) исследует его специфические функции с помощью электрофизиологических методов измерения. Процесс экспериментальный - только благодаря внешним воздействиям, можно добиться появления вызванных потенциалов. Это биоэлектрические сигналы.

Данный метод даёт возможность получить информацию о функциональном состоянии мозга и деятельности его глубинных отделов, причем в них можно даже не внедряться. На сегодняшний день этот метод широко применяет клиническая нейрофизиология. Цель заключается в выяснении информации, касающейся состояния разных сенсорных систем, таких как осязание, слух, зрение. При этом исследуются как периферические нервы, так и центральные.

Польза этого метода очевидна. Врачи получают объективную информацию непосредственно от организма. Пропадает необходимость опрашивать пациента. Что особенно хорошо в случае с маленькими детьми или людьми с нарушением сознания, которые в силу своего возраста или состояния не могут выразить ощущения словами.

Хирургия

Вниманием стоит отметить и данную тему. Существует такое понятие, как хирургическая нейрофизиология. Это, говоря иными словами, «прикладная» сфера. Практикуется она хирургами-нейрофизиологами, которые прямо во время операции наблюдают за тем, как функционирует нервная система их пациента. Данный процесс, чаще всего, сопровождается электрофизиологическим исследованием определённых участков ЦНС оперируемого. Это, к слову, имеет отношение к обширной клинической дисциплине, называющейся нейромониторингом.

Метод вызванных потенциалов

Про него стоит рассказать более подробно. Нейрофизиология - это дисциплина, позволяющая выяснить немало важной информации, которая может поспособствовать лечению пациента. И метод вызванных потенциалов применяется по отношению к зрительной, акустической, слуховой, соматосенсорной и транскраниальной функциям.

Суть его заключается в следующем: врач выделяет и усредняет самые слабые потенциалы биоэлектрической мозговой активности, что является ответом на афферентные стимулы. Методика надёжна, поскольку она подразумевает использование единого алгоритма трактовки.

Благодаря таким исследованиям получается выявить у пациента неврологические расстройства разной степени, а также расстройства, которые поразили сенсомоторную кору мозга, проводящие пути сетчатки, функцию слуха и т. д. Более того, возможность просчитывать влияние наркоза на человеческий организм стала реальной. Теперь, с помощью данного метода, получается оценить кому, спрогнозировать её развитие и вычислить вероятную

Специализация

Врачи-нейрофизиологи являются не только медиками, но ещё и аналитиками. Посредством различных исследований специалист может определить, насколько сильно поражена ЦНС. Это даёт путь к установлению точного диагноза и назначению грамотного, правильного лечения.

Взять, к примеру, обычную головную боль - она может быть последствием сосудистых спазмов и повышенного внутричерепного давления. Но нередко это ещё симптом развивающейся опухоли или даже судорожного синдрома. К счастью, в наше время есть несколько методов, посредством которых врачи выясняют, что именно происходит с пациентом. О них можно рассказать напоследок.

Виды исследований

Итак, первое - это ЭЭГ, или реоэнцефалография, как её называют врачи. Посредством ЭЭГ диагностируют эпилепсию, опухоли, травмы, воспалительные и сосудистые заболевания мозга. Показанием для реоэнцефалографии являются припадки, судороги, разговоры и блуждания во время сна, а также недавно перенесённое отравление ядами. ЭЭГ является единственным исследованием, которое можно провести, даже если пациент находится без сознания.

РЭГ (электроэнцефалография) помогает выявить причины сосудистых патологий мозга. Благодаря данному исследованию получается изучить церебральный кровоток. Исследование осуществляется посредством пропускания через ткани головного мозга слабого высокочастотного тока. Рекомендовано при повышенном или пониженном давлении и мигренях. Процедура безболезненная и безопасная.

ЭНМГ - последнее популярное исследование. Это электронейромиография, за счет которой исследуются поражения, затронувшие нейромоторный периферический аппарат. Показаниями является миостения, миотония, остеохондроз, а также дегенеративные, токсические и воспалительные заболевания.

Предмет, содержание, значение нейрофизиологии. Становление и развитие науки.

Слово физиология происходит от греческого слова fussis – науки о природе. Первоначально оно обозначало всю совокупность наук о растительном и животном мире. По мере накопления знаний выделилась самостоятельная научная дисциплина, изучающая функции живого организма, которая и стала называться физиология.

Физиология – это наука о функциях клеток, тканей, органов, систем органов и целого организма.

Физиология изучает процессы, протекающие в органах и системах человека, в их взаимосвязи с окружающей средой, при различных состояниях организма.

Задача физиологии состоит в познании свойств, форм проявления и механизмов регуляции этих свойств при различных состояниях организма и различных условиях внешней среды.

Физиология ребенка - наука, изучающие изменения функций организма, возникающие в процессе его развития.

Нейрофизиология изучает закономерности функционирования ЦНС, особенности функционирования структур ЦНС, их взаимосвязь между собой.

Задача нейрофизиологии заключается в познании механизмов работы головного и спинного мозга.

Нейрофизиология тесно связана сФизиологией ВНД . В настоящее время установлено, что субстратом осуществления сложных рефлекторных реакций является кора головного мозга и подкорковые структуры. ВНД была выделена как условно-рефлекторная деятельность высших отделов ЦНС, обеспечивающих адекватное и наиболее совершенное отношение целого организма к внешнему миру. ВНД – это совокупность сложных форм деятельности коры больших полушарий и ближайших к ней подкорковых образований, обеспечивающая взаимосвязь целого организма с внешней средой.

В последние годы в мировой науке имеется тенденция к интеграции сведений, полученных в смежных областях знаний и создание на этой основе системы нейронаук. К нейронаукам относятся; нейрофизиология, физиология ВНД и психофизиология.

Психология - одна из древнейших наук в современной системе научного знания. Она возникла как результат осознания человеком самого себя. Само название этой науки - психология (psyche - душа, logoc - учение) указывает, что основное ее предназначение - познание своей души и ее проявлений - воли, восприятия, внимания, памяти и т.д. Нейрофизиология - специальный раздел физиологии, изучающий деятельность нервной системы, возникла намного позже. Практически до второй половины XIX века нейрофизиология развивалась как экспериментальная наука, базирующаяся на изучении животных. Действительно, «низшие» (базовые) проявления деятельности нервной системы одинаковы у животных и человека. К таким функциям нервной системы относятся проведение возбуждения по нервному волокну, переход возбуждения с одной нервной клетки на другую (например, нервную, мышечную, железистую), простые рефлексы (например, сгибания или разгибания конечности), восприятие относительно простых световых, звуковых, тактильных и других раздражителей и многие другие. Только в конце XIX столетия ученые перешли к исследованию некоторых сложных функций дыхания, поддержания в организме постоянства состава крови, тканевой жидкости и некоторых других. При проведении всех этих исследований ученые не находили существенных различий в функционировании нервной системы как в целом, так и ее частей у человека и животных, даже очень примитивных. Например, на заре современной экспериментальной физиологии излюбленным объектом была лягушка. Только с открытием новых методов исследования (в первую очередь электрических проявлений деятельности нервной системы) наступил новый этап в изучении функций головного мозга, когда стало возможным исследовать эти функции, не разрушая мозг, не вмешиваясь в его функционирование, и вместе с тем изучать высшие проявления его деятельности - восприятие сигналов, функции памяти, сознания и многие другие.

Как уже указывалось, психология как наука намного старше, чем физиология, и на протяжении многих веков психологи в своих исследованиях обходились без знаний физиологии. Конечно, это связано прежде всего с тем, что знания, которыми располагала физиология 50-100 лет тому назад, касались только процессов функционирования органов нашего тела (почек, сердца, желудка и др.), но не головного мозга. Представления ученых древности о функционировании головного мозга ограничивались только внешними наблюдениями: они считали, что в головном мозге - три желудочка, и в каждый из них древние врачи «помещали» одну из психических функций (рис. 1).

Перелом в понимании функций головного мозга наступил в XVIII столетии, когда стали изготавливать очень сложные часовые механизмы. Например, музыкальные шкатулки исполняли музыку, куклы танцевали, играли на музыкальных инструментах. Все это приводило ученых к мысли, что наш головной мозг чем-то очень похож на такой механизм. Только в XIX веке окончательно было установлено, что функции головного мозга осуществляются по рефлекторному (reflecto-отражаю) принципу. Однако первые представления о рефлекторном принципе действия нервной системы человека были сформулированы еще в XVIII столетии философом и математиком Рене Декартом. Он полагал, что нервы представляют собой полые трубки, по которым от головного мозга, вместилища души, передаются животные духи к мышцам. На рис. 2 видно, что мальчик обжег ногу, и этот стимул запустил всю цепь реакций: вначале «животный дух» направляется к головному мозгу, отражается от него и по соответствующим нервам (трубкам) направляется к мышцам, раздувая их. Здесь без труда можно увидеть простую аналогию с гидравлическими машинами, которые во времена Р. Декарта были вершиной достижения инженерной мысли. Проведение аналогии между действием искусственных механизмов и деятельностью головного мозга - излюбленный прием при описании функций мозга. Например, наш великий соотечественник И. П. Павлов сравнивал функцию коры больших полушарий головного мозга с телефонным узлом, на котором барышня-телефонистка соединяет абонентов между собой. В наше время головной мозг и его деятельность чаще всего сравнивают с мощным компьютером. Однако любая аналогия весьма условна. Не вызывает сомнений, что головной мозг действительно выполняет огромный объем вычислений, но принцип его деятельности отличен от принципов действия компьютера. Но вернемся к вопросу: зачем психологу знать физиологию головного мозга?

Вспомним идею рефлекса, высказанную еще в XVIII веке Р. Декартом. Собственно зерном этой идеи было признание того, что реакции живых организмов обусловлены внешними раздражениями благодаря деятельности головного мозга, а не «по воле Божьей». В России эта идея была с воодушевлением воспринята научной и литературной общественностью. Вершиной этого был выход в свет знаменитого труда Ивана Михайловича Сеченова «Рефлексы головного мозга» (1863), оставившего глубокий след в мировой культуре. Свидетельством служит тот факт, что в 1965 г., когда исполнилось столетие со дня выхода этой книги в свет, в Москве под патронажем ЮНЕСКО прошла международная конференция, на которой присутствовали многие ведущие нейрофизиологи мира. И. М. Сеченов впервые полно и убедительно доказал, что психическая деятельность человека должна стать объектом изучения физиологами.

И. П. Павлов развил эту мысль в виде «учения о физиологии условных рефлексов».

Ему принадлежит заслуга в создании метода экспериментального исследования «высшего этажа» головного мозга коры - больших полушарий. Этот метод назван «методом условных рефлексов». Он установил фундаментальную закономерность предъявление животному (И. П. Павлов проводил исследования на собаках, но это верно и для человека) двух стимулов - вначале условного (например, звук зуммера), а затем безусловного (например, подкармливание собаки кусочками мяса). После некоторого числа сочетаний это приводит к тому, что при действии только звука зуммера (условного сигнала) у собаки развивается пищевая реакция (выделяется слюна, собака облизывается, скулит, смотрит в сторону миски), т. е. образовался пищевой условный рефлекс (рис. 3). Собственно этот прием при дрессировке был давно известен, но И. П. Павлов сделал его мощным инструментом научного исследования функций головного мозга.

Физиологические исследования в сочетании с изучением анатомии и морфологии головного мозга привели к однозначному заключению – именно головной мозг является инструментом нашего сознания, мышления, восприятия, памяти и других психических функций.

Основная трудность исследования заключается в том, что психические функции чрезвычайно сложны. Психологи исследуют эти функции своими методами (например, при помощи специальных тестов изучают эмоциональную устойчивость человека, уровень умственного развития и другие свойства психики). Характеристики психики исследуются психологом без «привязки» к мозговым структурам, т. е. психолога интересуют вопросы организации самой психической функции, но не то, как работают отдельные части головного мозга при осуществлении этой функции. Только относительно недавно, несколько десятилетий назад, появились технические возможности для исследования методами физиологии (регистрация биоэлектрической активности головного мозга, исследование распределения тока крови и др., подробнее см. далее) некоторых характеристик психических функций - восприятия, внимания, памяти, сознания и др. Совокупность новых подходов к исследованию головного мозга человека, сфера научных интересов физиологов в области психологии и привели к появлению в пограничной области этих наук новой науки - психофизиологии. Это обусловило взаимопроникновение двух областей знаний - психологии и физиологии. Поэтому физиологу, который исследует функции головного мозга человека, необходимы знания психологии и применение этих знаний в своей практической работе. Но и психолог не может обойтись без регистрации и исследования объективных процессов головного мозга с помощью электроэнцефалограмм, вызванных потенциалов, томографических исследований и пр.

Методы нейрофизиологических исследований. Электрическая активность головного мозга.

В физиологии выделяют два основных метода : наблюдение и эксперимент.

Метод наблюдения заключается в пассивной регистрации хода того или иного процесса или явления.

Эксперимент – это исследование какой-либо функции путем активного воздействия. Существуют два вида эксперимента ; острый и хронический. При остром эксперименте исследователь вырезает интересующие его структуры (ПР – мозжечек). Такой эксперимент влечет гибель подопытных животных. Хронический эксперимент изучает функции в тесной взаимосвязи с другими функциями организма – подопытное животное не погибает.

В клинической практике используют

В физиологии ВНД еще Павловым был разработан метод условных рефлексов . С помощью этого метода он изучал функции коры больших полушарий, подкорковых образований, явления концентрации и иррадиации, аналитико-синтетическую деятельность мозга.

В современных условиях для исследования физиологических процессов используют электорофизиологические методы, позволяющие регистрировать биопотенциалы (электрокардиография, электроэнцефалография, электромиография). С помощью компьютерной томографии, можно не прибегая к операции установить морфофункциональные изменения головного мозга.

Методы изучения мозга.

1)морфологические методы – исследование тонкого строения мозга (выявление тончайших элементов нервных клеток) с помощью световой и электронной микроскопии, радиохимии.

2) биохимические методы – исследование метаболических процессов мозга здорового и больного человека, а также при различных функциональных состояниях, формах деятельности и т.д. Выделят несколько областей нейрохимии – химия пептидов, медиаторов, модуляторов, аминокислот и т.д.

3) физиологические методы – экспериментальные методы, направленные на изучение функций различных отделов мозга.

· Метод разрушения мозга . Первоначально использовался для моделирования ситуаций, в которые попадают люди с локальными поражениями мозга. В клинической практике используют метод разрушения структур ЦНС в целях лечения (например лечение наркомании). Изучение и разрушение структур мозга с лечебной целью нашло применение в клинике академика Бехтеревой для лечения различных форм заболеваний ЦНС.

· Метод электрического раздражения мозга – внедрялся в экспериментальную физиологию с середины 19 в. В современной науке используется стереотаксическая техника, позволяющая вводить электрод в любой очень локальный участок мозга. Этот прием используется и для терапии ряда неврологических и психических заболеваний.

· Метод хемостимуляции, термо - и хеморазрушения, разрушение ультразвуком – позволяет добиться еще большей локальности.

· Метод регистрации электрических процессов мозга – применяется со второй половины 20 в. Метод электроэнцефалографии – это метод регистрации электрической активности мозга, главным образом корковых нейронов. Кривая, отражающая электрическую активность, называется электроэнцефалограммой . Для регистрации применяют электроэцефалограф. В целом ЭЭГ позволяет определить характер состояния мозга (ПР – эпилепсию).

· Метод исследования мозгового кровотока - метод реаэнцефалографии (РЭГ). Запись РЭГ проводят с помощью реографа, подключенного к электроэнцефалографу. РЭГ представляет собой кривую, слагающуюся из восходящих и нисходящих путей. Она имеет вершины и зубцы на спуске кривой. РЭГ является безвредным методом диагностики церебраьных расстройств. Изучается мозговой кровоток в бассейнах сонных и позвоночных артерий.

· Методы томографические (компьютерная томография головы). Суть томографических исследований – это получение среза мозга искусственным путем. Для построения среза используют либо просвечивание мозга с помощью рентгеновских лучей, либо излучение от мозга, исходящее от изотопов, предварительно введенных в мозг. Этот метод широко используется для диагностики заболеваний ЦНС (можно выявить локализацию опухолей, кровоизлияний и т.д.).

Электрическая активность головного мозга.

Колебания электрических потенциалов коры впервые были записаны В.В. Правдич-Нилинским в 1913 г. Записывают колебания потенциалов коры при помощи электроэнцефалографа. На ЭЭГ различают волны разной частоты и амплитуды. По частоте колебаний в 1 с. выделяют альфа-ритм, бета-ритм, тетта-ритм, дельта-ритм.

Характеристика биоритмов головного мозга:

Диагностическое значение электроэнцефалограммы: у здорового человека в состоянии бодрствования должны регистрироваться альфа и бета волны; иначе - признак патологии в головном мозге (кровоизлияния, опухоли).

Физиологические процессы, как правило, скрыты от внешнего наблюдения, поэтому они длительное время оставались вне области интересов психологов, занимавшихся в основном исследованием доступных для прямого наблюдения проявлений поведения человека. Однако многие модели психической деятельности носили бы чисто умозрительный характер, если бы психологи не заинтересовались нейрофизиологическими процессами, лежащими в основе исследуемой ими реальности.

С другой стороны, в нейрофизиологии постоянно возникала потребность описать организацию физиологических процессов в терминах, определяемых в психологических концепциях и теориях. Происходило и происходит взаимное обогащение двух наук о человеке, как теоретическими разработками, так и экспериментальными методами. Что же даёт изучение физиологических показателей работы нервной системы? Во-первых, физиологические показатели становятся надёжными элементами, используемыми при описании изучаемого поведения. Во-вторых. Оно позволяет экспериментаторам включить в сферу своих исследований скрытые для прямого наблюдения проявления активности организма, лежащие в основе поведения.

В психофизиологии основными методами регистрации физиологических процессов являются электрофизиологические методы. В физиологической активности клеток, тканей и органов особое место занимает электрическая составляющая. Электрические потенциалы отражают физико-химические следствия обмена веществ, сопровождающие все основные жизненные процессы, и поэтому являются исключительно надежными, универсальными и точными показателями течения любых физиологических процессов .

Надёжность электрических показателей по сравнению с другими, по мнению А.Б. Когана, особенно демонстративна, "когда они оказываются единственным средством обнаружения деятельности". Единообразие потенциалов действия в нервной клетке, нервном волокне, мышечной клетке, как у человека, так и у животных говорит об универсальности этих показателей. Точность электрических показателей, т.е. их временное и динамическое соответствие физиологическим процессам, основана на быстрых физико-химических механизмах генерации потенциалов. Являющихся неотъемлемым компонентом физиологических процессов в нервной или мышечной структуре.

К перечисленным преимуществам электрических показателей физиологической активности следует добавить и неоспоримые технические удобства их регистрации: помимо специальных электродов, для этого достаточно универсального усилителя биопотенциалов. И, что важно для психофизиологии, большую часть этих показателей можно регистрировать, никак не травмируя объект и не вмешиваясь в изучаемые процессы. К наиболее широко используемым методам относятся регистрация импульсной активности нервных клеток, регистрация электрической активности кожи, электроэнцефалография, элекроокулография, элекромиография и электрокардиография. В последнее время в психофизиологию внедряется новый метод регистрации электрической активности мозга - магнитоэнцефалография и изотопный метод.

Изучение активности нервных клеток, или нейронов, как целостных морфологических и функциональных единиц нервной системы, безусловно, остаётся базовым направлением в психофизиологии. Одним из показателей активности нейронов являются потенциалы действия - электрические импульсы длительностью несколько мс и амплитудой до нескольких мВ. Современные технические возможности позволяют регистрировать импульсную активность у животных в свободном поведении и, таким образом, сопоставлять эту активность с различными поведенческими показателями. В редких случаях в условиях нейрохирургических операций исследователям удаётся зарегистрировать импульсную активность нейронов у человека.

Поскольку нейроны имеют небольшие размеры (несколько десятков микрон), то и регистрация их активности осуществляется с помощью подводимых вплотную к ним специальных отводящих микроэлектродов. Микроэлектроды бывают металлическими и стеклянными. Электрод фиксируется в специальном микроманипуляторе, укреплённом на черепе животного, и коммутируется с усилителем. С помощью микроманипулятора электрод через отверстие в черепе пошагово вводят в мозг. Длина шага составляет несколько микрон, что позволяет подвести регистрирующий кончик электрода очень близко к нейрону, не повреждая его подведение электрода к нейрону осуществляется либо в ручную, и в этом случае животное должно находиться в состоянии покоя, либо автоматически на любом этапе поведения животного. Усиленный сигнал поступает на монитор и записывается на магнитную ленту или в память ЭВМ. При "подходе" кончика электрода к нейрону экспериментатор видит на мониторе поведение импульсов, амплитуда которых при дальнейшем осторожном продвижение электрода постепенно увеличивается. Когда амплитуда импульсов начинает превосходить фоновую активность мозга, электрод больше не подводят, чтобы исключить возможность повреждения мембраны нейрона.

Нейрофизиологические методы обследования.

Лечение головной боли и других неврологических заболеваний требует, прежде всего, определения точного диагноза. Невозможно правильно лечить, не поставив правильный диагноз. На начальном этапе обследования, для выявления причин головной боли, головокружения, нарушения памяти, дискоординации движений, последствий черепно-мозговой травмы, применяются следующие методы диагностических исследований:

Электроэнцефалография (ЭЭГ) -- метод записи колебаний электрических потенциалов головного мозга у взрослых и детей, регистрируемых с помощью специальных приборов --электроэнцефалографов

Возможность оценить активность головного мозга, наличие патологической активности, в т.ч эпилептиформной, контроль действия противосудорожных препаратов, исследование обморочных состояний, степень физиологической зрелости корковых ритмов(соответствие возрасту) у детей.

Электроэнцефалография - мониторирование (ЭЭГ) - способ длительной (в течение многих часов, суток) записи ЭЭГ на флэш - карту с дальнейшим экспортом записанной информации в компьютерную систему для анализа и просмотра. Метод позволяет провести анализ динамики ЭЭГ в процессе нормальной жизнедеятельности человека, под влиянием естественных раздражителей, которые оказывают воздействие на человека в повседневной его деятельности, что имеет большое значение при обследовании детей, а также под влиянием различных функциональных (фотостимуляция, гипервентиляция и т.д.) нагрузок в любых условиях. Для проведения ЭЭГ-мониторирования на пациента надеваются электроды (19-скальповых, 2-ушных),которые соединяются с коробкой с референтными ячейками, которая в свою очередь подсоединяется с блоком пациента, в который предварительно вставляются 4 батарейки питания и флэш-карта для записи данных ЭЭГ. ЭЭГ-мониторирование позволяет осуществлять не только диагностику, но и коррекцию лечения, прогноз заболевания, а также дифференциальную диагностику многочисленных форм эпилепсии, неэпилептических приступов, оценки стойкости ремиссии и возможности отмены терапии и т. д. ЭЭГ-мониторирование также используется при нарушениях сна: оценивается глубина сна, продолжительность его отдельных фаз.

Электроэнцефалография с депривацией сна (ЭЭГ с депривацией сна) с последующим кратковременным (20-30 мин) сном

Депривация (лишение) сна в течение 24-48 часов перед ЭЭГ проводится для выявления скрытой эпилептической активности в сложных для распознавания случаях эпилепсии. Лишение сна является довольно сильным провоцирующим приступы фактором. В этом случае пациент не спит всю ночь перед процедурой, а утром проводится стандартная ЭЭГ, после чего (если пациент засыпает) возможна запись ЭЭГ сна в течение 20-30 мин. Запись ЭЭГ во время сна позволяет обнаружить эпилептическую активность у большей части тех больных, у которых в дневное время она не выявляласьдаже под влиянием обычных провокационных проб.

Реоэнцефалография (РЭГ) представляет собой метод, исследующий объемные колебания кровенаполнения сосудов головного мозга и шеи на основе графической регистрации синхронных пульсу изменений сопротивления между электродами, наложенными на кожу головы(с помощью реоэнцефалографа)

Дает возможность судить о тонусе и эластичности сосудов мозга и шеи, вязкости крови, скорости распространения пульсовой волны, скорости кровотока, оценивать латентные периоды, время протекания и выраженность регионарных сосудистых реакций.

Эхоэнцефалография (ЭхоЭГ) -- метод инструментальной диагностики, основанный на отражении ультразвука от границы внутричерепных образований и сред с различной акустической плотностью (мягкие покровы головы, кости черепа, мозговые оболочки, мозговое вещество, ликвор, кровь).

Важнейший показатель при эхоэнцефалографии (ЭхоЭГ) -- положение срединных структур мозга (М-эхо) оценка гидроцефально- гипертензионного синдрома (внутричерепного давления).

Электронейромиография - это метод диагностики, который позволяет измерить скорость прохождения нервного импульса по нервным волокнам. Позволяет легко установить "место" поражения нервных структур, используется при диагностике различных заболеваний периферической нервной системы (моно-- и полинейропатии при интоксикациях, сахарном диабете, травмы конечностей с повреждением периферических нервов и т.п) У нас проводится электронейромиография верхних и нижних конечностей при помощиэлектронейромиографа. Вся процедура миографии занимает около часа. Пациент ложится на кушетку и с помощью излучателя импульсных токов врач по функциональной диагностике вызывает возбуждение нерва и сокращение мышц.

К методам нейрофизиологического обследования относятся электроэнцефалография (ээг), реоэнцефалография (рэг), магнитоэнцефалография (мэг), вызванные потенциалы (вп).

Электроэнцефалография. Это метод изучения особенностей функционирования мозга с использованием записи биотоков, представляющих алгебраическую сумму внеклеточных электрических полей, возбуждающих и тормозящих постсинаптических потенциалов корковых нейронов, что отражает происходящие в них процессы метаболизма. Эти биотоки чрезвычайно слабы (сила тока 10-15 мкв), поэтому для их регистрации используют усилители. Ээг отражает совместную активность большого числа нейронов, и по ее картине можно судить о работе различных участков мозговой сети, расположенной под электродами. Особую важность ээг представляет для диагностики , очаговых органических поражений мозга. При эпилепсии выявляются острые волны, пики, комплексы «пик - волна» и другие проявления судорожной активности. В ряде случаев такие комплексы регистрируются у лиц, которые никогда не имели судорожных припадков, но при этом риск их возникновения достаточно высок («скрытая »). Регистрируются и такие случаи, когда при наличии у больных припадков судорожная активность на ээг отсутствует. Ее выявлению способствует гипервентиляция, которая достигается глубокими вдохами и выдохами в течение 1-2 мин. Если больные принимают противосудорожные средства, судорожная готовность подавляется. При органических поражениях мозга без припадков на ээг отмечаются умеренные диффузные изменения биоэлектрической активности мозга.

Реоэнцефалография. Рэг используется с целью изучения особенностей мозгового кровообращения, его патологии и служит для измерения сопротивления между электродами, которые особым образом расположены на поверхности черепа. Это сопротивление, как считается, обусловлено главным образом внутричерепной гемодинамикой. Измерение проводится слабым переменным током (от 1 до 10 ма) высокой частоты. По характеру кривой рэг - скорости нарастания пульсовой волны, наличию и положению дикротического зубца, межполушарной асимметрии и форме рэг в разных отведениях - можно косвенно судить о кровоснабжении различных зон мозга и состоянии сосудистого тонуса. В некоторых случаях рэг позволяет диагностировать последствия закрытой черепно-мозговой травмы или геморрагического инсульта. Диагностике помогают разработанные компьютерные программы для автоматического многоканального анализа рэг и получение данных в наглядной графической форме.

Магнитоэнцефалография. Мэг - бесконтактный метод исследования функции мозга с регистрацией сверхслабых магнитных полей, которые возникают в результате протекания в головном мозге электрических токов. Особенностью магнитного поля является то, что череп и мозговые оболочки практически не оказывают влияния на его величину, они «прозрачны» для магнитных силовых линий. Это дает возможность регистрировать активность не только поверхностно расположенных корковых структур (как в случае ээг), но и глубоких отделов мозговой ткани с достаточно высоким отношением показателей сигнал/шум. Для мэг впервые был разработан математический аппарат и созданы программные средства определения локализации дипольного источника в объеме мозга, которые затем модифицировали для анализа ээг. Поэтому мэг достаточно эффективна для точного определения внутримозговой локализации эпилептических очагов, тем более что теперь созданы многоканальные мэг-установки. Мэг значительно дополняет данные ээг.

Метод вызванных потенциалов. Вп - это кратковременные изменения электрической активности головного мозга, возникающие в ответ на сенсорную стимуляцию. Амплитуда единичных вп настолько мала, что они практически не выделяются на фоновой ээг. Для их определения и выявления используется метод усреднения стимулов с помощью специализированных лабораторных эвм. В зависимости от модальности сенсорных раздражителей различают зрительные вп (звп) на вспышку света, слуховые вп (свп) и стволовые вп (ствп) - на звуковой щелчок, а также соматосенсорные вп (ссвп) - на электростимуляцию кожи или нервов конечностей. Усредненный вп - это полифазный комплекс, отдельные компоненты которого имеют определенные амплитудные соотношения и значения пиковой латентности. Различают направленные вверх негативные волны (n1, n2) и направленные вниз позитивные волны (p1, р2, рз). Для большинства вп известна внутримозговая локализация генераторов каждого из компонентов, причем наиболее коротколатентные (до 50 мс) комплексы генерируются на уровне рецепторов и стволовых ядер, а среднелатентные (50-150 мс) и длиннолатентные (более 200 мс) - на уровне корковых проекций анализатора. В психиатрической практике чаще используется звп и свп, а также так называемые вп, связанные с событием (erp), которые называют когнитивными (более 250 мс).