Нейроны ретикулярной формации. Нарушение функций ретикулярной формации. Ядра ретикулярной формации и их функции

Разнообразие функций, осуществляемых различными отделами ретикулярной формации, представлено в таблице ниже.

а) Генераторы программ движений . К программам движений черепных нервов относят следующие:
Содружественные (параллельные) движения глаз, местно контролируемые двигательными узлами (центрами взора) в среднем мозге и мосту, имеющие связь с ядрами двигательных нервов глаз.
Ритмичные жевательные движения, контролируемые супратригеминальным премоторным ядром моста.
Глотание, рвотные движения, кашель, зевание и чихание контролируют отдельные премоторные ядра продолговатого мозга, имеющие связь с соответствующими черепными нервами и дыхательным центром.

Слюноотделительные ядра относят к мелкоклеточной ретикулярной формации моста и продолговатого мозга. От них отходят преганглионарные парасимпатические волокна к лицевому и языкоглоточному нервам.

Ретикулярная формация (РФ).
(А) Отделы. (Б) Группы аминергических и холинергических клеток.

1. Генераторы программ движений . Из экспериментов на животных давно установлено, что генераторы программ движений низших позвоночных и низших млекопитающих расположены в сером веществе спинного мозга, соединяясь с помощью нервов с каждой из четырех конечностей. Данные генераторы в спинном мозге представляют собой электрические нейронные сети, последовательно доставляющие сигналы к сгибательным и разгибательным группам мышц. Генераторная активность спинного мозга подчиняется командам из высших центров-двигательной области среднего мозга (ДОСМ).

К ДОСМ относят ножкомостовое ядро, прилежащее к верхней мозжечковой ножке в месте ее прохождения в области верхнего края четвертого желудочка и соединения со средним мозгом. От этих ядер в составе центрального покрышечного пути отходят нисходящие волокна к оральному и каудальному ядрам моста, образованным двигательными нейронами, иннервирующими мышцы разгибатели, и к крупноклеточным нейронам продолговатого мозга, контролирующим нейроны, иннервирующие мышцы-сгибатели.

Основной механизм реабилитации при поражениях спинного мозга-активация спинномозговых двигательных рефлексов у пациентов, перенесших травмы с частичным или полным разрывом спинного мозга. В настоящее время хорошо известно, что даже после полного разрыва на уровне шейного или грудного отдела возможна активация пояснично-крестцовых программ движений путем продолжительной электрической стимуляции твердой мозговой оболочки на уровне поясничных сегментов. Стимуляция в значительной степени активирует волокна задних корешков, запуская образование импульсов в основании переднего рога.

При поверхностной электромиографии (ЭМГ) со сгибательных и разгибательных мышц было обнаружено последовательное возбуждение нейронов мышц сгибателей и разгибателей, хотя данная программа не соответствовала нормальной. Для образования нормальной программы разрыв должен быть неполным с сохранением части нисходящих путей от ножкомостового ядра.

Создание истинных шагательных движений при полном разрыве возможно, если пациента поставить на беговую дорожку с одновременной стимуляцией твердой мозговой оболочки, преимущественно за счет получения генератором дополнительных чувствительных и проприоцептивных импульсов. Сила мышц и скорость ходьбы будут нарастать в течение нескольких недель, но недостаточно для ходьбы без использования ходунков.

Современные исследования направлены на улучшение возможности «создания моста» с супраспинальными двигательными волокнами путем очищения от остатков тканей в месте разрыва и замещения этих тканей составом, физически и химически стимулирующим регенерацию аксонов.

2. Высшие центры контроля мочеиспускания описаны в следующей статье на сайте.


Общая схема контроля движений.

б) Контроль дыхания . Дыхательный цикл в значительной степени регулируют дорсальное и вентральное дыхательные ядра, расположенные в верхнем отделе продолговатого мозга с каждой стороны от срединной линии. Дорзальное дыхательное ядро расположено в среднелатеральном отделе ядра одиночного пути. Вентральное ядро расположено позади двойного ядра (отсюда название - позадидвойное ядро). Оно отвечает за выдох; поскольку этот процесс в норме происходит пассивно, активность нейронов при обычном дыхании относительно низкая, но значительно возрастает при нагрузках. Третье, медиальное парабрахиальное ядро, прилежащее к голубому пятну, вероятно, имеет значение в механизме дыхания, возникающем в состоянии бодрствования.

Парабрахиальное ядро , образованное множеством подгрупп нейронов, вместе с описанными выше аминергической и холинергической системами участвует в поддержании состояния бодрствования путем активации коры головного мозга. Стимуляция этого ядра миндалевидным телом при тревожных расстройствах приводит к характерной гипервентиляции.

Дорзальное дыхательное ядро контролирует процесс вдоха. От него отходят волокна к двигательным нейронам на противоположной стороне спинного мозга, иннервирующим диафрагму, межреберные и вспомогательные дыхательные мышцы. Ядро получает восходящие возбуждающие импульсы от хеморецепторов хемочувствительной области продолговатого мозга и каротидного синуса.

Вентральное дыхательное ядро отвечает за выдох. При спокойном дыхании оно работает как нейронная цепь, участвуя в реципрокном торможении центра вдоха посредством ГАМК-ергических (γ-аминомасляная кислота) вставочных нейронов. При форсированном дыхании оно активирует клетки переднего рога, иннервирующие брюшные мышцы, отвечающие за спадение легких.

1. Хемочувствительная область продолговатого мозга . Сосудистое сплетение четвертого желудочка продуцирует спинномозговую жидкость (СМЖ), проходящую через латеральную апертуру (Лушка) четвертого желудочка. Клетки латеральной ретикулярной формации на поверхности продолговатого мозга в этой области имеют исключительную чувствительность к концентрации ионов водорода (Н +) в омывающей СМЖ. Фактически, эта хемочувствительная область продолговатого мозга анализирует парциальное давление углекислого газа (рСО 2) в СМЖ, которое соответствует рСО 2 крови, снабжающей головной мозг. Любое повышение концентрации ионов Н + приводит к стимуляции дорсального дыхательного ядра путем прямой синаптической связи (в продолговатом мозге расположено несколько других хемочувствительных ядер).

2. Хеморецепторы каротидного синуса . Каротидный синус размером с булавочную головку прилежит к стволу внутренней сонной артерии и получает от этой артерии веточку, разветвляющуюся внутри. Кровоток через каротидный синус настолько интенсивный, что артериовенозное парциальное давление кислорода (рО 2) изменяется менее чем на 1 %. Хеморецепторы представляют собой клетки клубочка, иннервируемые ветвями синусного нерва (ветвь IX черепного нерва). Каротидные хеморецепторы реагируют как на снижение рО 2 , так и на повышение рСО 2 и обеспечивают рефлекторную регуляцию уровней газов крови путем изменения частоты дыхания.

Хеморецепторы аортального гломуса (под дугой аорты) у человека относительно недоразвиты.


Дыхательный центр. Все срезы показаны снизу и сзади.
(А) - увеличенный срез (Б).
(А) Тормозное взаимодействие между дорсальным и вентральным дыхательными ядрами (ДДЯ, ВДЯ).
К хемочувствительной области (ХЧО) продолговатого мозга, волокна от которой направляются к ДДЯ, прилежат капилляры сосудистой оболочки, продуцирующие спинномозговую жидкость (СМЖ) (Б).
В составе языкоглоточного нерва (IX) проходят хемочувствительные волокна от каротидного синуса до ДДЯ.
(В) Возбуждение двигательных нейронов диафрагмы осуществляет противоположное ДДЯ.
(Г) Для форсированного выдоха ВДЯ противоположной стороны возбуждает нейроны мышц передней брюшной стенки.

в) Контроль сердечно-сосудистой системы . Сердечный выброс и периферическое сопротивление сосудов регулируют нервная и эндокринная системы. Вследствие широкого распространения эссенциальной артериальной гипертензии в позднем среднем возрасте большинство исследований в этой области направлено на изучение механизмов сердечно-сосудистой регуляции.

Восходящие волокна, сигнализирующие о повышенном артериальном давлении, начинаются от рецепторов растяжения (многочисленных свободных нервных окончаний) в стенке каротидного синуса и дуги аорты. Эти восходящие волокна, известные как барорецепторы, направляются к медиально расположенным клеткам ядра одиночного пути, образующим барорецепторный центр. Восходящие волокна от каротидного синуса проходят в составе языкоглоточного нерва; волокна от дуги аорты входят в состав блуждающего нерва. Барорецепторные нервы относят к «буферным нервам», так как их действие заключается в коррекции любых отклонений артериального давления от нормы.

Сердечный выброс и периферическое сопротивление сосудов зависят от активности симпатической и парасимпатической нервных систем. Два основных барорецепторных рефлекса - парасимпатический и симпатический - способствуют нормализации повышенного артериального давления.


:
(А) Верхний отдел продолговатого мозга.
(Б) Сегменты спинного мозга от Т1 до L3.
(В) Задняя стенка сердца. Барорецепторный рефлекс (слева):
1. Рецепторы растяжения в каротидном синусе возбуждают волокна синусовой ветви языкоглоточного нерва. ВСА-внутренняя сонная артерия.
2. Барорецепторные нейроны ядра одиночного пути отвечают возбуждением тормозящих сердце (кардиоингибирующих) нейронов дорсального (двигательного) ядра блуждающего нерва (ДЯ-Х).
3. Преганглионарные парасимпатические холинергические волокна блуждающего нерва образуют синапсы с клетками интрамуральных ганглиев в задней стенке сердца.
4. Постгангионарные парасимпатические холинергические волокна тормозят пейсмекерную активность синоатриального узла, уменьшая, тем самым, частоту сердечных сокращений.
Баросимпатический рефлекс (справа) :
1 Афферентные волокна рецепторов растяжения каротидного синуса возбуждают медиальные барорецепторные нейроны ядра одиночного пути.
2. Барорецепторные нейроны отвечают возбуждением тормозных нейронов депрессорного центра в центральном ретикулярном ядре продолговатого мозга.
3. Происходит торможение адренергических и норадренергических нейронов прессорного центра латерального ретикулярного ядра (переднего вентролатерального отдела продолговатого мозга).
4. Уменьшается тоническое возбуждение нейронов боковых рогов спинного мозга.
5 и 6. Происходит пре- и постганглионарное торможение симпатической иннервации тонуса артериол, что, в свою очередь, приводит к снижению периферического сосудистого сопротивления.

г) Сон и бодрствование . При электроэнцефалографии (ЭЭГ) можно наблюдать характерные картины электрической активности корковых нейронов при разных состояниях сознания. Нормальное состояние бодрствования характеризуется высокочастотными низкоамплитудными волнами. Погружение в сон сопровождается низкочастотными высокоамплитудными волнами, более высокая амплитуда волн обусловлена синхронизированной активностью большего числа нейронов. Такой тип сна называют медленноволновым (синхронизированным), или He-REM-сном (REM-rapid eye movement- быстрые движения глаз). Он продолжается около 60 мин, а затем переходит в десинхронизированный сон, при котором последовательности на ЭЭГ напоминают таковые при состоянии бодрствования. Только в этот период возникают сны и быстрые движения глаз (отсюда и более часто употребляемый термин - REM-сон). В период нормального ночного сна сменяют друг друга несколько циклов REM-сна и He-REM-сна, описанные в отдельной статье на сайте.

Смена циклов сна и бодрствования - отражение двух нейронных сетей мозга, одной - работающей в состоянии бодрствования, а другой - в состоянии сна. Эти сети проти вопоставлены друг другу по типу «переключателя» между сном и бодрствованием (что делает возможным переключение между сетями быстрым и полным). Аналогичная схема работает при смене REM-сна на медленноволновой сон. В норме управление сном происходит с помощью физиологических систем (вклад системы гомеостаза - изменение уровня метаболизма клеток), циркадных ритмов (супрахиазмальное ядро- главные биологические часы, которые синхронизированы с информацией от окружающей среды, воздействием света на сетчатку и мелатонином, вырабатываемым эпифизом, и управляют циклом сон-бодрствование и другими физиологическими функциями) и аллостатической нагрузки (принятие пищи и двигательная активность).

Эти факторы изменяются медленно, и без быстрой смены состояния переключательного механизма переход от бодрствования ко сну также был бы медленным и неудобным.

3. Стимуляция пробуждения, или активирующие системы (каудальный отдел среднего мозга и ростральный отдел моста). За активацию коры больших полушарий отвечают два основных пути:

Холинергические нейроны (ножкомостового и латеродорсальных ядер покрышки) подходят к таламусу (переключательным ядрам и ретикулярному ядру) и ингибируют те ГАМК-ергические нейроны таламуса, задача которых - препятствование передаче чувствительной информации к коре полушарий.

Моноаминергические нейроны расположены в голубом пятне, дорсальном и срединном ядрах шва (серотонинергические), парабрахиальном ядре (глутаматергические), околоводопроводном сером веществе (ОВСВ, дофаминергические) и в серобугорно-сосцевидном ядре (гистаминергические). Аксоны нейронов каждой из этих областей направляются к базальным отделам переднего мозга (базальному ядру Мейнерта и безымянной субстанции), а оттуда - к коре больших полушарий.

Пептидергические (орексиновые) и глутаматергические нейроны латерального гипоталамуса, а также холинергические и ГАМК-ергические нейроны базальных ганглиев переднего мозга также посылают волокна к коре больших полушарий.

Резюме: биологической основой внимания является ориентировочный рефлекс.

И.П.Павлов описал ориентировочный рефлекс как безусловный рефлекс, выступающий основой непроизвольного внимания. Сами же процессы внимания в его системе объясняются, прежде всего, за счет взаимодействия возбуждения и торможения, протекающих в коре больших полушарий мозга. Когда человек внимателен к чему-либо, это означает, что у него в коре головного мозга возникает очаг возбуждения. В это же время все остальные участки мозга находятся в состоянии торможения. Поэтому человек, сосредоточенный на чем-либо одном, может ничего другого в этот момент не замечать. Но эти представления о мозговых взаимоотношениях имеют слишком абстрактный вид. Чтобы в этом убедиться, стоит сравнить этот подход с подходом А.Р.Лурия.

Учение А.Р.Лурия. В учении А.Р.Лурия о мозговой локализации высших психических функций человека дана структурно-функциональная модель мозга, в которой каждая высшая психическая функция выполняется за счет совместной работы трех мозговых блоков (Лурия А.Р. Основы нейропсихологии. М., 1973). Первый блок (блок регуляции уровня общей и избирательной активации мозга) образован неспецифическими структурами ретикулярной формации ствола мозга, структурами среднего мозга, диэнцефальных отделов ствола, лимбической системы, медиобазальными отделами коры лобных и височных долей мозга. Второй блок (блок приема, переработки и хранения модально-специфической информации) образован основными анализаторными системами (зрительной, слуховой, кожно-кинестетической), корковые зоны которых расположены в задних отделах больших полушарий. Третий блок (блок программирования, регуляции и контроля за протеканием психической функции, обеспечивающий формирование мотивов деятельности и контроль за результатами деятельности посредством большого числа двусторонних связей с корковыми и подкорковыми структурами) образован моторными, премоторными и префронтальными отделами коры больших полушарий. При этом важна последовательность работы этих структур: на первом этапе происходит побуждение к деятельности, основой которой выступает, в том числе, активизация ретикулярной формации.

Роль ретикулярной формации. Способность настораживаться, реагируя иногда на очень незначительное изменение в окружающей среде, обеспечивается расположенными в больших полушариях мозга сетями нервных путей, соединяющих ретикулярную формацию (совокупность структур головного мозга, регулирующих уровень возбудимости) с разными участками коры больших полушарий. Нервные импульсы, идущие по этой сети, возникают вместе с сигналами от органов чувств и возбуждают кору, приводя ее в состояние готовности реагировать на ожидаемые в дальнейшем раздражения. Таким образом, ретикулярная формация с ее восходящими и нисходящими волокнами вместе с органами чувств обуславливает появление ориентировочного (или ориентировочно-исследовательский) рефлекса, являясь первичной физиологической основой внимания.



Еще в 1935 г. Ф.Бремер провел сравнение электроэнцефалограмм при двух типах перерезки ствола мозга: а) на уровне шейных позвонков (препарат, называемый «encephale isole» - нижние отделы ствола) и б) на уровне моста (препарат «cerveau isole» - верхние отделы ствола). В первом случае записи биоэлектрической активности не отличались от ЭЭГ нормальных животных, тогда как во втором случае в ЭЭГ постоянно присутствовали медленные волны большой амплитуды, характерные для состояния сна. В препаратах, называемых «cerveau isole», коры достигают только зрительные и обонятельные афферентные раздражения, поскольку сигналы, передаваемые другими черепномозговыми нервами (в частности, слуховым и тройничным), оказываются перерезанными. Отсюда Ф.Бремер сделал вывод, что, когда центральная нервная система лишается большей части стимуляции, исходящей из внешнего мира, наступает сон; соответственно поддержание состояния бодрствования является результатом активирующего воздействия, оказываемого ощущениями. Как показал затем Д.Линдсли, в этих случаях сигналы, вызываемые сенсорными раздражителями, продолжают доходить до коры, но электрические ответы коры на эти сигналы становятся лишь кратковременными и не вызывают стойких изменений. Это показало, что для возникновения стойких процессов возбуждения, характеризующих состояние бодрствования, одного притока сенсорных импульсов недостаточно, необходимо поддерживающее влияние активирующей ретикулярной системы.

Эти представления о процессах общей активации получили дальнейшее развитие в работах Г.Моруцци и Г.Мэгуна (Moruzzi G., Magoun H.W. Brain stem reticular formation and activation of the EEG // EEG and Clinical Neurophysiology. 1949, 1 - «Ретикулярная формация мозгового ствола и реакция активации в ЭЭГ»). Они провели эксперименты на основе электростимуляции мозга, выявившие функции неспецифической системы мозга – ретикулярной формации ствола мозга, относимой, наряду с лимбической системой, к «модулирующим» системам мозга. Основной функцией этих систем является регуляция функциональных состояний организма. Исследователи не выключали, а раздражали восходящую ретикулярную формацию имплантированными в нее электродами, показали, что такое раздражение ретикулярной формации приводит к пробуждению животного, а дальнейшее усиление этих раздражений - к возникновению выраженных эффективных реакций животного. Оказалось, что при раздражении ее электрическим током, происходит реакция активации, а при удалении этой структуры наступает кома. Эти структуры фактически ответственны за поддержание состояния бодрствования, причем степень их активности сама отчасти зависит от сенсорных влияний. Однако вопреки тому, что предполагал Бремер, активирующее влияние сенсорики проявляется не в форме прямой активации мозговой коры специфическими сигналами; она воздействует прежде всего на ретикулярную формацию, активность которой в свою очередь регулирует функциональное состояние коры, двигательных и вегетативных центров. Было установлено, что кортикальный сон препаратов «cerveau isole» Бремера вызывался не перерезкой специфических сенсорных путей к коре, а устранением влияний, оказываемых на нее ретикулярной формацией.

Также в опытах Д.Линдсли было выявлено, что раздражение стволовых ядер восходящей активирующей ретикулярной формации существенно понижает пороги чувствительности (иначе говоря, обостряют чувствительность) животного и позволяет осуществлять тонкие дифференцировки (например, дифференцировку изображения конуса от изображения треугольника), которые ранее были недоступны животному.

Нейроанатомия ретикулярной формации. Первоначально считалось, что к неспецифической системе мозга, которая выполняет задачу диффузной и генерализованной активации коры больших полушарий, относятся лишь сетевидные образования ствола мозга. Сейчас принято, что восходящая неспецифическая активирующая система занимает место от продолговатого мозга до зрительного бугра (таламуса).

Ретикулярная (от лат. слова reticulum – сеточка) формация состоит из многочисленных, не имеющих чётких границ групп нейронов. Подобное скопление нервных клеток по своему принципу организации напоминает нервные сети кишечнополостных. Их длинные и сильно ветвящиеся отростки формируют сети вокруг серого вещества спинного мозга и в дорсальной части ствола мозга. Впервые описана в середине XIX века, а название этой структуре дал О.Дейтерс. В ретикулярной формации ствола мозга выделяют свыше 100 ядер, которые на протяжении от спинного мозга до промежуточного мозга объединяются в три основные группы. 1) Срединная группа ядер концентрируется вокруг средней линии, в основном, в области шва моста и продолговатого мозга (ядра шва), которые образованы волокнами чувствительных проводящих путей, идущих от спинного мозга, ядер тройничного нерва и формирующих перекрест вдоль средней линии. 2) Медиальная группа ядер расположена по сторонам от предыдущей: к ней относятся медиальное крупноклеточное ядро, голубоватое место, нейроны центрального серого вещества среднего мозга и др. 3) Латеральная группа ядер находится латеральнее медиальной и включает латеральное ретикулярное ядро, парабрахиальные ядра и др.

Нейроны ретикулярной формации имеют различную величину: в срединных и медиальных ядрах находятся крупные нервные клетки, которые формируют длинные афферентные и эфферентные проводящие пути, а в латеральных - средние и мелкие нейроны, которые являются, в основном, ассоциативными нейронами.

Большинство нейронов ретикулярной формации в качестве передатчика нервного импульса используют пептиды (энкефалины, нейротензин и т.д.), но также широко представлены и моноамины. Ядра шва содержат серотонинергические нейроны, а голубоватого места – норадренергические.

Связи ретикулярной формации подразделяются на афферентные и эфферентные. На ее нейронах заканчиваются афферентные волокна: от спинного мозга, следующие по ответвлениям всех чувствительных проводящих путей, а также по спиноретикулярному тракту, от ядер черепных нервов в составе коллатералей ядерно-корковых, слухового и зрительных путей, от мозжечка в составе мозжечково-ретикулярного пути, от ядер таламуса, субталамуса и гипоталамуса, полосатого тела, структур лимбической системы, различных участков коры большого мозга, в том числе и по ответвлениям корково-спинномозговых и корково-ядерных путей. Нейроны ретикулярной формации имеют длинные тонкие эфферентные отростки, делящиеся на восходящую и нисходящую ветви, которые направляются к различным отделам головного и спинного мозга: моторным нейронам передних рогов спинного мозга и двигательным ядрам черепных нервов ствола мозга в составе ретикуло-ядерных и ретикуло-мозжечковых путей, мозжечку, красному ядру, чёрному веществу и ядрам пластинки крыши спинного мозга, ретикулярным ядрам таламуса, ядрам гипоталамуса, опосредованно, через ядра промежуточного мозга к полосатому телу, лимбической системе и новой коре.

С помощью ретикулярной формации двигательные и вегетативные ядра ствола мозга объединяются в функциональные центры, регулирующие многие сложные формы поведения: циркуляторную, дыхательную, кашлевую, глотательную, рвотную и др. Ретикулярная формация обеспечивает: 1) Поддержание состояния бодрствования. Увеличивая или уменьшая приток сенсорной информации к коре больших полушарий и подкорковым структурам, ретикулярная формация играет роль регулятора уровня сознания (цикл сон/бодрствование). Регулируя медиаторный обмен нейронов ретикулярной формации или модулируя активность их рецепторов с помощью определённых лекарственных препаратов, можно активизировать деятельность коры больших полушарий или наоборот - добиться сна. Например, кофеин, содержащийся в кофе или чае, стимулирует нервные клетки ретикулярной формации. Наоборот, среди психотропных средств (от греч. psyche - душа + tropos - направление) есть так называемые нейролептики, которые, блокируя ретикулярную формацию мозга и снижая скорость проведения возбуждения, действуют успокаивающим образом (подавляют бред, галлюцинации, чувство страха, агрессивность, психомоторное возбуждение). 2) Контроль рефлекторной деятельности путём стимуляции или торможения мотонейронов передних рогов серого вещества спинного мозга и двигательных ядер черепных нервов ствола мозга. 3) Объединение группы нейронов различных отделов головного и спинного мозга, благодаря чему возможно выполнение сложных рефлекторных актов: глотания, жевания, кашля, рвоты и т.д. 4) Обеспечение вегетативной регуляции за счёт координации эфферентных и афферентных сигналов в соответствующих центрах ствола мозга. Так, сосудодвигательный и дыхательный центры объединяют группы нейронов, ответственных за регуляцию дыхания и кровообращения. 5) Участие в эмоциональном восприятии чувствительных сигналов путём увеличения или уменьшения поступления афферентных импульсов к лимбической системе.

Избирательный характер протекания психических процессов, что характерно для внимания, обеспечивается лишь бодрственным состоянием коры с оптимальным уровнем возбудимости. Этот бодрственный уровень достигается за счет работы механизмов связи верхнего ствола с корой головного мозга и, прежде всего, с работой восходящей активирующей ретикулярной формацией. Именно эта восходящая активирующая ретикулярная формация доносит до коры, сохраняя ее в состоянии бодрствования, импульсы, связанные с обменными процессами организма, влечениями, с экстерорецепторами, доводящими информацию из внешнего мира. Сначала этот поток идет в верхние отделы ствола и ядра зрительного бугра, а затем – в кору головного мозга.

Обеспечение оптимального тонуса и бодрственного состояния коры осуществляется, однако, не только восходящей активирующей ретикулярной формацией. С ней тесно связан и аппарат нисходящей системы, волокна которой начинаются в коре головного мозга (прежде всего в медиальных и медиобазальных отделах лобных и височных долей) и направляются как к ядрам ствола, так и к двигательным ядрам спинного мозга. Работа нисходящей ретикулярной формации очень важна тем, что с ее помощью до ядер мозгового ствола доводятся те формы возбуждения, которые первоначально возникают в коре головного мозга и являются продуктом высших форм сознательной деятельности человека с ее сложными познавательными процессами и сложными программами прижизненно формируемых действий.

Взаимодействие обеих составных частей активирующей ретикулярной системы и обеспечивает сложнейшие формы саморегуляции активных состояний мозга, меняя их под воздействием как элементарных (биологических), так и сложных (социальных по происхождению) форм стимуляции.

Филогенетически очень древняя нейронная структура и хорошо развитый отдел ствола мозга рептилий. Сначала она представляла собой полисинаптический путь с медленным проведением, тесно связанный с обонятельной и лимбической областями. Прогрессирующее доминирование зрения и слуха над обонянием привело к смещению чувствительных и двигательных функций внутрь покрышки среднего мозга. Прямые спино-покрышечный и покрышечно-спинномозговой пути обходят ретикулярную формацию, которая отвечает, главным образом, за вегетативную регуляцию. У млекопитающих покрышка, в свою очередь, стала играть второстепенную роль в передаче возбуждения по очень быстро проводящим волокнам, соединяющим кору полушарий с периферическими двигательными и чувствительными нейронами.

В мозге человека ретикулярная формация сохраняет свою связь с лимбической системой и продолжает играть важную роль в вегетативной и рефлекторной регуляции.

Термин ретикулярная формация относят только к полисинаптической нейронной сети ствола мозга, несмотря на то, что сеть распространяется кпереди в таламус и гипоталамус и кзади в проприоспинальный тракт спинного мозга.

Общее строение показано на рисунке ниже. Срединная ретикулярная формация образована рядом ядер шва (греч.-nuclei raphe). Большая часть серотонинергических путей осевого отдела нервной системы начинается из ядер шва.

Ретикулярная формация (РФ).
(А) Отделы. (Б) Группы аминергических и холинергических клеток.

Рядом расположена парамедианная ретикулярная формация. Этот отдел полностью состоит из крупноклеточных нейронов; в нижнем отделе моста и верхнем отделе продолговатого мозга (до уровня сращения ретикулярной формации с центральным ретикулярным ядром продолговатого мозга) можно также обнаружить гигантоклеточные нейроны.

Самым передним отделом считают латеральную мелкоклеточную ретикулярную формацию . Длинные дендриты мелкоклеточных нейронов образуют разветвления через определенные интервалы. Дендриты имеют преимущественно поперечное направление, а через промежутки между ними проходят длинные проводящие пути к таламусу. Латеральный отдел образован, главным образом, афферентными нейронами. К ним подходят волокна от всех чувствительных проводящих путей, включая органы чувств.

Обонятельные волокна проходят через медиальный пучок переднего мозга, расположенный рядом с гипоталамусом.

Зрительные проводящие пути проходят через верхний холмик.

Слуховые волокна подходят от верхнего ядра оливы.

Вестибулярные волокна подходят от медиального вестибулярного ядра.

Соматические чувствительные волокна проходят через спинно-ретикулярные тракты от спинномозгового и собственного (главного или главного мостового) ядер тройничного нерва.

Большая часть аксонов мелкоклеточных нейронов интенсивно разветвляется между дендритами нейронов парамедианной ретикулярной формации. Однако часть из них образует синапсы с ядрами черепных нервов и участвует в создании программ движений.

Парамедианная ретикулярная формация - преимущественно эфферентная система. Аксоны относительно длинные, некоторые поднимаются вверх, образуя синапсы с ретикулярной формацией ствола мозга или таламусом. От других отходят как восходящие, так и нисходящие ветви, образующие полисинаптическую сеть. К крупноклеточным нейронам подходят волокна от премоторной коры, которые дают начало ретикуло-спинномозговым путям моста и продолговатого мозга.


а) Аминергические нейроны ствола мозга . Рассеянные по ретикулярной формации группы аминергических (или моноаминергических) нейронов - нейроны, медиаторы которых образуются из ароматических аминокислот и обладают рядом влияний на клетку. Одна группа продуцирует нейромедиатор серотононин, три другие - катехоламины (дофамин, норадреналин и адреналин), одна группа - гистамин.

Серотонинергические пути от срединного отдела ствола мозга (шва).

Серотонинергические нейроны - наиболее часто встречаемые нейроны в любом отделе центральной нервной системы (ЦНС). К ним относят нейроны среднего мозга, волокна которых поднимаются к большим полушариям; нейроны моста, разветвляющиеся в стволе мозга и мозжечке; клетки продолговатого мозга, нисходящие в спинной мозг.

Все отделы серого вещества ЦНС пронизаны серотонин-секретирующими аксональными ветвями. Повышение серотонинергической активности используют в клинической практике для лечения такого распространенного заболевания, как большое депрессивное расстройство.


Дофаминергические нейроны среднего мозга представлены двумя группами. В месте соединения покрышки с ножками расположено черное вещество. Медиальнее него расположены вентральные ядра покрышки, от которых отходят мезокортикальные волокна к лобной доле и мезолимбические волокна, идущие непосредственно к прилежащему ядру.

Норадренергические (норэпинефринергические) нейроны немного менее многочисленные, чем серотонинергические. Около 90 % тел нейронов сконцентрировано в голубом пятне (locus ceruleus) в дне IV желудочка у верхнего конца моста. От голубого пятна начинаются пути во всех направлениях, что показано на рисунке ниже.

Норадренергические пути от моста и продолгова того мозга.

Адреналин-секретирующие (эпинефрин-секретирующие) нейроны относительно немногочисленны и расположены преимущественно в ростральном/каудальном отделах продолговатого мозга. Одна часть волокон восходит к гипоталамусу, другая направляется книзу, образуя синапсы с преганглионарными симпатическими нейронами спинного мозга.

В больших полушариях ионная и электрическая активность аминергических нейронов значительно различается. Во-первых, для каждого амина существует более одного типа постсинаптических рецепторов. Во-вторых, некоторые аминергические нейроны высвобождают также белковые вещества, способные регулировать действие медиатора,- как правило, увеличивая его продолжительность. В-третьих, более крупные корковые нейроны получают множество возбуждающих и тормозных влияний от местных сетей с циркулирующим возбуждением, а также имеют множество различных типов рецепторов. Активация одного типа аминергического рецептора может привести к сильному или слабому эффекту в зависимости от исходного возбужденного состояния нейрона.

Наши знания о физиологии и фармакодинамике аминергических нейронов далеко не полные, однако их значение в широком разнообразии поведенческих функций не вызывает сомнений.

Часть поперечного среза через верхний отдел моста, показаны элементы ретикулярной формации.

Лекция 3.

РЕТИКУЛЯРНАЯ ФОРМАЦИЯ

Любая ответная реакция организма, любой рефлекс представляет собой обобщенный, целостный ответ на раздражитель. В ответной реакции участвует вся ЦНС, участвуют многие системы организма. Это объединение, включение в различные рефлекторные реакции обеспечивается ретикулярной формацией (РФ). Она является главным объединителем рефлекторной деятельности всей ЦНС.

Первые сведения о РФ были получены в конце XIX и начале XX в.

Эти исследования показали, что в центральной части ствола мозга располагаются нейроны, которые имеют разную величину, форму и тесно переплетены друг с другом своими отростками. Так как внешний вид нервной ткани этой области под микроскопом напоминалсеть, то Дейтерс, который впервые описал ее строение в 1885 году, назвал ее ретикулярной или сетчатой формацией. Дейтерс считал, что РФ выполняет чисто механическую функцию. Он рассматривал ее как каркас, как арматуру ЦНС. Истинные функции РФ, физиологическое значение ее было выяснено сравнительно недавно, последние 20-30 лет, когда в руках физиологов появилась микроэлектродная техника и используя стереотаксическую методику стало возможным изучать функции отдельных участков ретикулярной формации.

Ретикулярная формация является надсегментарным аппаратом мозга,

ЦНС. Она связана со многими образованиями ЦНС.

Ретикулярная формация (РФ) образована совокупностью нейронов, расположенных в его центральных отделах как диффузно, так и в виде ядер.

Структурные особенности РФ . Нейроны РФ имеют длинные маловетвящиеся дендриты и хорошо ветвящиеся аксоны, которые часто образуют Т-образное ветвление: одна из ветвей аксона имеет нисходящее, а вторая - восходящее направления. Ветви нейронов под микроскопом образуют сеточку (ретикулум), с чем и связано название данной структуры мозга, предложенное О. Дейтерсом (1865).

Классификация.

1 . С анатомической точки зрения РФ делят на:

1. Ретикулярную формацию спинного мозга - это substantioРоланди, которая занимает верхушку задних рогов верхних шейных сегментов.

2. Ретикулярную формациюствола мозга (заднего и среднего мозга).

3. Ретикулярную формацию промежуточного мозга. Здесь она представлена неспецифическими ядрами таламуса и гипоталамуса.

4. Ретикулярную формацию переднего мозга.

2. В настоящее время физиологи пользуются классификацией РФ, которую предложил шведский нейрофизиолог Бродал. Согласно этой классификации в РФ выделяют латеральное и медиальное поля .

Латеральное поле - это афферентная часть РФ. Нейроны латерального поля воспринимают информацию, которая приходит сюда, поступает по восходящим и нисходящим проводниковым путям. Дендриты этих нейронов направлены латералъно и они воспринимают сигнализацию. Аксоны идут в сторону медиального поля, т.е. обращены в центр мозга.

Афферентные входы поступают в латеральные области РФ преимущественно от трех источников:

Температурных и болевых рецепторов по волокнам спиноретикулярного тракта и тройничного нерва. Импульсы идут в ретикулярные ядра продолговатого мозга и моста;

Сенсорной, от зон коры головного мозга по кортико-ретикулярным путям идут в ядра, дающие начало ретикулоспинальным трактам (гигантоклеточное ядро, оральное и каудальное ядра моста), а также в ядра, которые проецируются на мозжечок (парамедианное ядро и ядро покрышки моста);

Ядер мозжечка по мозжечково-ретикулярному пути импульсация поступает в гигантоклеточное и парамедианное ядра и ядра моста.

Медиальное поле - это эфферентная, исполнительная часть РФ. Оно расположено в центре мозга. Дендриты нейронов медиального поля направлены в сторону латерального поля, где они контактируют с аксонами латерального поля. Аксоны нейронов медиального поля идут либо вверх, либо вниз, образуя восходящие и нисходящие ретикулярные пути. Ретикулярные пути, которые образованы аксонами медиального поля образуют широкие связи со всеми отделами ЦНС, спаивая их воедино. В медиальном поле формируются преимущественно эфферентные выходы.

Эфферентные выходы идут:

К спинному мозгу по латеральному ретикулоспинальному тракту (от гигантоклеточного ядра) и по медиальному ретикулоспинальному тракту (от каудального и орального ядер моста);

К верхним отделам головного мозга (неспецифическим ядрам таламуса, заднему гипоталамусу, полосатому телу) идут восходящие пути, начинающиеся в ядрах продолговатого мозга (гигантоклеточном, латеральном и вентральном) и в ядрах моста;

К мозжечку идут пути, которые начинаются в латеральном и парамедианном ретикулярных ядрах и в ядре покрышки моста.

Медиальное поле в свою очередь делят на восходящую ретикулярную систему (ВРС) и нисходящую ретикулярную систему (НРС) . Восходящая ретикулярная система образует проводящие пути, направляет свои импульсы коре больших полушарий и подкорке. Нисходящая ретикулярная система направляет свои аксоны в нисходящем направлении - в спинной мозг - ретикуло-спинальный путь.

Как в восходящей, так и нисходящей ретикулярной системе имеются тормозные и активирующие нейроны. По этому различают восходящую ретикулярную активирующую систему (ВРАС) , и восходящую ретикулярную тормозную систему (ВРТС) . ВРАС оказывает активирующее влияние на кору и подкорку, а ВРТС - тормозит, подавляет возбуждение. Так же в НРС различают нисходящую ретикулярную тормозную систему (НРТС) которая берет начало от тормозных нейронов РФ и идет в спинной мозг тормозит его возбуждение, и нисходящую ретикулярную активирующую систему (НРАС), которая направляет активирующие сигналы в нисходящем направлении.

Функции ретикулярной формации

Ретикулярная формация не осуществляет специфические, какие-то определенные рефлексы Функция РФ иная.

1. Во-первых, РФ обеспечивает, интеграцию, объединение функций всей ЦНС. Она является главной интегрирующей, ассоциативной системой ЦНС. Эту функцию она выполняет потому, что РФ, ее нейроны образуют огромное количество синапсов как между собой, так и с другими отделами ЦНС. Поэтому, возбуждение попав в РФ, очень широко распространяется, иррадиирует и по ее эфферентным путям: восходящим и нисходящим это возбуждение достигает всех частей ЦНС. В результате этой иррадиации включаются и вовлекаются в работу все образования ЦНС, достигается содружественная работа отделов ЦНС т.е. РФ обеспечивает формирование целостных рефлекторных реакций , в рефлекторной реакции участвует вся ЦНС

II. Вторая функция РФ заключается в том, что она поддерживает тонус ЦНС, т.к. РФ сама всегда находится в тонусе, тонизирована. Её тонус обусловлен рядом причин.

1).РФ обладает очень высокой хемотропностью Здесь находятся нейроны обладающие высокой чувствительностью к некоторым веществам крови (например, к адреналину, СО;) и лекарствам (к барбитуратам, аминазину и др.).

2). Второй причиной тонуса РФ является то, что в РФ постоянно поступают импульсы от всех проводниковых путей. Это связано с тем, что на уровне ствола мозга афферентное возбуждение, которое возникает при раздражении любых рецепторов трансформируется вдва потока возбуждения. Один поток направляется по классическому лемнисковому пути, по специфическому пути и достигает определенную для данного раздражения участок коры. Одновременно каждый проводниковый путь по коллатералям отклоняется в РФ и возбуждает её. Не все проводниковые пути действуют одинаково на тонус РФ. Возбуждающее действие проводниковых путей неодинаково. Особенно сильно возбуждает РФ импульсы, сигналы, которые идут от болевых рецепторов, с проприорецепторов, со слуховых и зрительных рецепторов. Особенно сильно возбуждения возникает при раздражении окончаний тройничного нерва. Поэтому при обмороках раздражают окончания n. trigeminus : обливают водой, дают нюхать нашатырный спирт, (йоги, зная действие тройничного нерва, устраивают "прочищение мозгов" - делают несколько глотков воды через нос).

3). Тонус РФ поддерживается также за счет импульсов, которые идут по нисходящим путям от коры больших полушарий, от базальных ганглиев.

4). В поддержании тонуса сетчатого образования имеет большое значение такжедлительная циркуляция нервных импульсов в самой РФ, имеет значение реверберация импульсов в РФ. Дело в том, что в РФ находится громадное количество нейронных колец и по ним информация, импульсы циркулируют часами.

5). У нейронов РФ длительный латентный период ответа на периферическую стимуляцию в связи с проведением возбуждения к ним через многочисленные синапсы.

6). Они имеют тоническую активность, в покое 5-10 имп/с.

В результате выше названных причин РФ всегда находится в тонусе и от нее импульсы поступают в другие отделы ЦНС. Если перерезать ретикуло-кортикальные пути, т.е. восходящие пути, идущие от РФ в кору, то кора головного мозга выходит из строя, так как она лишилась главного источника импульсов.


Похожая информация.


Ретикулярная формация - совокупность нейронов отростки которых образуют своеобразную сеть в пределах центральной нервной системы.Ретикулярная формация открыта Дейтерсом, изучалась В. Бехтеревым, обнаружена в стволе мозга и спинном мозге. Основную роль выполняет ретикулярная формация ствола мозга. Ретикулярная формация занимает центральную часть на уровне продолговатого мозга, варолиевого моста, среднего и промежуточного мозга. Нейроны ретикулярной формации - клетки разнообразной формы, они имеют длинные ветвящиеся аксоны и длинные неветвящиеся дендриты. Дендриты образуют синапсы на нервных клетках. Некоторые дендриты выходят за пределы ствола мозга и доходят до поясничного отдела спинного мозга - они образуют нисходящий ретикулоспинальный путь.
Ретикулярная формация имеет связи с различными отделами центральной нервной системы: в ретикулярную формацию поступают импульсы от различных афферентных нейронов. Они поступают по коллатералям других проводящих путей. Ретикулярная формация не имеет непосредственных контактов с афферентной системой; ретикулярная формация имеет 2-х сторонние связи с нейронами спинного мозга - в основном с мотонейронами; с образованиями ствола мозга (с промежуточным и средним мозгом); с мозжечком, с подкорковыми ядрами (базальными ганглиями), с корой больших полушарий.
В ретикулярной формации ствола мозга различают 2 отдела:

растральный - ретикулярная формация на уровне промежуточного мозга;

каудальный - ретикулярная формация продолговатого мозга, моста и среднего мозга.

Изучены 48 пар ядер ретикулярной формации.

Функции ретикулярной формации изучены в 40-е гг. XX века Мэгуном и Моруции. Они проводили опыты на кошках, помещая электроды в различные ядра ретикулярной формации.

Ретикулярная формация обладает нисходящим и восходящим влиянием.

Нисходящее влияние - на нейроны спинного мозга. Оно (влияние) может быть активирующим и тормозным.

Восходящее влияние - на нейроны коры головного мозга - тоже тормозное и активизирующее. За счет особенности своих нейронов ретикулярная формация способна изменять функциональное состояние нейронов центральной нервной системы.

Особенности нейронов ретикулярной формации:

постоянная спонтанная электрическая активность - обеспечивается гуморальным влиянием и влиянием вышележащих отделов центральной нервной системы. Эта активность не имеет рефлекторного происхождения;

явление конвергенции - к ретикулярной формации идут импульсы по коллатералям различных проводящих путей. Сходясь к телам одних и тех же нейронов импульсы теряют свою специфичность; импульсы, поступая к нейронам ретикулярной формации, изменяют ее функциональную активность - если нейроны обладают выраженной электрической активностью, то под влиянием афферентных импульсов электрическая активность уменьшается и наоборот, т. е. модулируется активность нейронов ретикулярной формации; у нейронов ретикулярной формации низкий порог раздражения и, как следствие, высокая возбудимость; у нейронов ретикулярной формации высокая чувствительность к действию гуморальных факторов: биологически активных веществ, гормонов (адреналина), избытку СО2, недостатку О2 и т. д.;



в состав ретикулярной формации входят нейроны с различными медиаторами: адренэргические, холин-, серотонин-, дофаминэргические.

Ретикулярная формация ствола мозга рассматривается как один из важных интегративных аппаратов мозга. К собственно интегративных функций ретикулярной формации относятся:
1) контроль над состояниями сна и бодрствования,
2) мышечный (фазный и тонический) контроль;
3) обработка информационных сигналов окружающей и внутренней среды организма, которые поступают по разным каналам.
Ретикулярная формация объединяет различные участки ствола мозга (ретикулярную формацию продолговатого мозга, варолиева моста и среднего мозга). В функциональном отношении в ретикулярной формации разных отделов мозга есть много общего, поэтому целесообразно рассматривать ее как единую структуру. Ретикулярная формация представляет собой диффузное накопление клеток разного вида и величины, которые разделены многими волокнами. Кроме этого, в середине ретикулярной формации выделяют около 40 ядер и пидьядер. Нейроны ретикулярной формации имеют широко разветвленные дендриты и продолговатые аксоны, часть которых делится Т-образно (один отросток направлен вниз, образуя ретикулярной-спинальный путь, а второй - в верхние отделы головного мозга).
В ретикулярной формации сходится большое количество афферентных путей из других мозговых структур: из коры большого мозга - коллатерали кортико-спинальных (пирамидных) путей, из мозжечка и других структур, а также коллатеральные волокна, которые подходят через ствол мозга, волокна сенсорных систем (зрительные, слуховые и т.д.). Все они заканчиваются синапсами на нейронах ретикулярной формации. Так, благодаря такой организации ретикулярная формация приспособлена к объединению влияний из различных структур мозга и способна влиять на них, то есть выполнять интегративные функции в деятельности ЦНС, определяя в значительной мере общий уровень ее активности.
Свойства ретикулярных нейронов. Нейроны ретикулярной формации способны к устойчивой фоновой импульсной активности. Большинство из них постоянно генерирует разряды частотой 5-10 Гц. Причиной такой постоянной фоновой активности ретикулярных нейронов являются: во-первых, массивная конвергенция различных афферентных влияний (от рецепторов кожных, мышечных, висцеральных, глаза, уши и др.)., А также воздействий из мозжечка, коры большого мозга, вестибулярных ядер и других мозговых структур на один и тот же ретикулярный нейрон. При этом зачастую в ответ на это возникает возбуждение. Во-вторых, активность ретикулярного нейрона может быть изменена гуморальными факторами (адреналин, ацетилхолин, напряжение С02 в крови, гипоксия и др.).. Эти непрерывные импульсы и химические вещества, содержащиеся в крови, поддерживают деполяризацию мембран ретикулярных нейронов, их способность к устойчивой импульсной активности. В связи с этим ретикулярная формация тоже оказывает на другие мозговые структуры постоянный тонический влияние.
Характерной особенностью ретикулярной формации также высокая чувствительность ее нейронов в различных физиологически активных веществ. Благодаря этому деятельность ретикулярных нейронов может быть сравнительно легко блокирована фармакологическими препаратами, которые связываются с циторецепторамы мембран этих нейронов. Особенно активными в этом отношении соединения барбитуровой кислоты (барбитураты), аминазин и другие лекарственные препараты, которые широко применяются в медицинской практике.
Характер неспецифических влияний ретикулярной формации. Ретикулярная формация ствола мозга участвует в регуляции вегетативных функций организма. Однако еще в 1946 г. американский нейрофизиолог Н. W. Megoun и его сотрудники обнаружили, что ретикулярная формация имеет непосредственное отношение к регуляции соматической рефлекторной деятельности. Было доказано, что ретикулярная формация оказывает диффузный неспецифический, нисходящий и восходящий влияние на другие мозговые структуры.
Нисходящее влияние.

Восходящий влияние. Исследования Н. W. Megoun, G. Moruzzi (1949) показали, что раздражение ретикулярной формации (заднего, среднего и промежуточного мозга) сказывается на деятельности высших отделов головного мозга, в частности коры большого мозга, обеспечивая переход ее в активный (неепання) состояние. Это положение подтверждается данными многочисленных экспериментальных исследований и клинических наблюдений. Так, если животное находится в состоянии сна, то прямое раздражение ретикулярной формации (особенно варолиева моста) через введенные в эти структуры электроды вызывает поведенческую реакцию пробуждения животного. При этом на ЭЭГ возникает характерное изображение - изменение альфа-ритма бета-ритмом, т.е. фиксируется реакция десинхронизации или активизации. Указанная реакция не ограничивается определенным участком коры большого мозга, а охватывает большие ее массивы, т.е. носит генерализованный характер. При разрушении ретикулярной формации или выключении ее восходящих связей с корой большого мозга животное впадает в соноподибний состояние, не реагирует на световые и обонятельные раздражители, фактически не вступает в контакт с внешним миром. То есть конечный мозг прекращает активно функционировать.
Таким образом, ретикулярная формация ствола головного мозга выполняет функции восходящей активирующей системы мозга, которая поддерживает на высоком уровне возбудимость нейронов коры большого мозга.
Кроме ретикулярной формации ствола мозга, в восходящую активирующую систему головного мозга входят также неспецифические ядра таламуса (дим. с. 89), задний гипоталамус, лимбических структуры. Являясь важным интегративным центром, ретикулярная формация, в свою очередь, является частью более глобальных интеграционных систем мозга, которые включают гипоталамо-лимбических и неокортикальных структуры. Именно во взаимодействии с ними и формируется целесообразна поведение, направленное на приспособление организма к меняющимся условиям внешней и внутренней среды.
Одним из основных проявлений повреждения ретикулярных структур у человека есть потеря сознания. Она бывает при черепно-мозговых травмах, нарушении мозгового кровообращения, опухолях и инфекционных процессах в стволе мозга. Длительность состояния обморока зависит от характера и выраженности нарушений функции ретикулярной активизирующего системы и колеблется от нескольких секунд до многих месяцев. Дисфункция восходящих ретикулярных влияний проявляется тоже потерей бодрости, постоянной патологической сонливостью или частыми приступами засыпания (пароксизмальная гиперсомия), беспокойным ночным сном. Наблюдаются также нарушения (чаще повышении) мышечного тонуса, различные вегетативные изменения, эмоционально-психические расстройства и др.



45. Физиология мозжечка. Влияние мозжечка на двигательные функции организма. Симптомы поражения мозжечка. Влияние мозжечка на вегетативные функции организма .

Мозжечок - отдел головного мозга позвоночных, отвечающий за координацию движений, регуляцию равновесия и мышечного тонуса.

Мозжечок представляет собой мозговой центр, который имеет в высшей степени важное значение для координации и регуляции двигательной активности и поддержания позы. Мозжечок работает главным образом рефлекторно, поддерживая равновесие тела и его ориентацию в пространстве. Также он играет важную роль (особенно у млекопитающих) в локомоции (перемещении в пространстве).

Соответственно главными функциями мозжечка являются:

1. координация движений

2. регуляция равновесия

3. регуляция мышечного тонуса

4. мышечная память

Симптоматика поражения.

Для поражения мозжечка характерны расстройства статики и координации движений, а также мышечная гипотония. Данная триада характерна как для человека, так и других позвоночных. При этом симптомы поражения мозжечка наиболее детально описаны для человека, так как имеют непосредственное прикладное значение в медицине.

Поражение мозжечка, прежде всего его червя (архи- и палеоцеребеллума) , ведёт обычно к нарушению статики тела - способности поддержания стабильного положения его центра тяжести, обеспечивающего устойчивость. При расстройстве указанной функции возникает статическая атаксия –нарушение движений проявляющееся в расстройстве их координации. Больной становится неустойчивым, поэтому в положении стоя он стремится широко расставить ноги, сбалансировать руками. Особенно чётко статическая атаксия проявляется в позе Ромберга. Больному предлагается встать, плотно сдвинув ступни, слегка поднять голову и вытянуть вперёд руки. При наличии мозжечковых расстройств больной в этой позе оказывается неустойчивым, тело его раскачивается. Больной может упасть. В случае поражения червя мозжечка больной обычно раскачивается из стороны в сторону и чаще падает назад, при патологии полушария мозжечка его клонит преимущественно в сторону патологического очага. Если расстройство статики выражено умеренно, его легче выявить у больного в так называемой усложнённой или сенсибилизированной позе Ромберга . При этом больному предлагается поставить ступни на одну линию с тем, чтобы носок одной ступни упирался в пятку другой. Оценка устойчивости та же, что и в обычной позе Ромберга.

В норме, когда человек стоит, мышцы его ног напряжены (реакция опоры ), при угрозе падения в сторону нога его на этой стороне перемещается в том же направлении, а другая нога отрывается от пола (реакция прыжка ). При поражении мозжечка, главным образом его червя, у больного нарушаются реакции опоры и прыжка. Нарушение реакции опоры проявляется неустойчивостью больного в положении стоя, особенно если ноги его при этом близко сдвинуты. Нарушение реакции прыжка приводит к тому, что, если врач, встав позади больного и подстраховывая его, толкает больного в ту или иную сторону, то последний падает при небольшом толчке (симптом толкания ).

Походка у больного с мозжечковой патологией весьма характерна и носит название «мозжечковой». Больной в связи с неустойчивостью тела идёт неуверенно, широко расставляя ноги, при этом его «бросает» из стороны в сторону, а при поражении полушария мозжечка отклоняется при ходьбе от заданного направления в сторону патологического очага. Особенно отчётлива неустойчивость при поворотах. Во время ходьбы туловище человека избыточно выпрямлено (симптом Тома ). Походка больного с поражением мозжечка во многом напоминает походку пьяного человека.

Если статическая атаксия оказывается резко выраженной, то больные полностью теряют способность владеть своим телом и не могут не только ходить и стоять, но даже сидеть.

Преимущественное поражение полушарий мозжечка (неоцеребеллума) ведёт к расстройству его противоинерционных влияний и, в частности, к возникновению динамической атаксии. Она проявляется неловкостью движений конечностей, которая оказывается особенно выраженной при движениях, требующих точности. Для выявления динамической атаксии проводится ряд координационных проб.

Проба на диадохокинез - больному предлагается закрыть глаза, вытянуть вперёд руки и быстро, ритмично супинировать и пронировать (вращать кнаружи и внутрь) кисти рук. В случае поражения полушария мозжечка движения кисти на стороне патологического процесса оказываются более размашистыми, в результате эта кисть начинает отставать. Тогда говорят о наличии адиадохокинеза.

Пальце-носовая проба - больной с закрытыми глазами отводит руку, а затем указательным пальцем пытается попасть в кончик своего носа. В случае мозжечковой патологии рука на стороне патологического очага совершает избыточное по объёму движение, в результате чего больной промахивается. Также выявляется характерный для мозжечковой патологии интенционный тремор (дрожание пальцев), выраженность которого нарастает по мере приближения пальца к цели.

Пяточно-коленная проба - больной, лежащий на спине с закрытыми глазами, поднимает высоко ногу и пытается пяткой попасть в колено другой ноги. При мозжечковой патологии отмечается промахивание, особенно при выполнении пробы гомолатеральной (на той же стороне) поражённому полушарию мозжечка ногой. Если всё-таки пятка достигает колена, то предлагается провести ею, слегка касаясь голени, по гребню большеберцовой кости вниз к голеностопному суставу. При этом в случае мозжечковой патологии пятка всё время соскальзывает то в одну, то в другую сторону.

Указательная (пальце-пальцевая) проба - больному предлагается попасть указательным пальцем в кончик направленного на него пальца исследующего. В случае мозжечковой патологии отмечается мимопопадание. Палец больного при этом обычно отклоняется в сторону поражённого полушария мозжечка.

Симптом Тома-Жументи - захватывая предмет, больной несоразмерно широко раздвигает пальцы.

«Проба с чашей» - больной, держащий в руке стакан с водой, расплёскивает воду.

Нистагм - подёргивание глазных яблок при взгляде в стороны или вверх. При поражении мозжечка нистагм рассматривается как результат интенционного дрожания глазных яблок. При этом плоскость нистагма совпадает с плоскостью произвольных движений глаз - при взгляде в стороны нистагм горизонтальный, при взгляде вверх - вертикальный.

Расстройство речи - возникает в результате нарушения координации работы мышц, составляющих речедвигательный аппарат. Речь делается замедленной (брадилалия), теряется её плавность. Она приобретает взрывчатый, скандированный характер (ударения расставляются не по смыслу, а через равномерные интервалы).

Изменения почерка - почерк больного становится неровным, буквы исковерканными, чрезмерно крупными (мегалография ).

Симптом Стюарта-Холмса (симптом отсутствия обратного толчка) - исследующий просит больного сгибать супинированное предплечье и в то же время, взяв его руку за запястье, оказывает сопротивление этому движению. Если исследующий при этом неожиданно отпустит руку больного, то больной не сможет вовремя притормозить дальнейшее сгибание руки, и она, сгибаясь по инерции, с силой ударит его в грудь.

Пронаторный феномен - больному предлагается удерживать вытянутые вперёд руки ладонями вверх. При этом на стороне поражённого полушария мозжечка происходит спонтанная пронация (поворот ладони внутрь и книзу).

Симптом Гоффа-Шильдера - если больной держит руки вытянутыми вперёд, то на стороне патологического очага рука отводится кнаружи.

Феномен Дойникова (изменение постуральных рефлексов) - сидящему больному предлагается кисти с разведёнными пальцами положить на свои бёдра вверх ладонями и закрыть глаза. В случае мозжечковой патологии на стороне патологического очага отмечается спонтанное сгибание пальцев и пронация кисти.

Проба Шильдера - больному предлагают вытянуть руки вперёд, закрыть глаза, поднять одну руку кверху и опустить её до уровня другой руки, а затем сделать наоборот. При поражении мозжечка больной опустит руку ниже вытянутой.

Мышечная гипотония выявляется при пассивных движениях, производимых исследующим в различных суставах конечностей больного. Поражение червя мозжечка ведёт обычно к диффузной гипотонии мышц, тогда как при поражении полушария мозжечка снижение мышечного тонуса отмечается на стороне патологического очага.

Маятникообразные рефлексы обусловлены также гипотонией. При исследовании коленного рефлекса в положении сидя со свободно свисающими с кушетки ногами после удара молоточком наблюдается несколько «качательных» движений голени.

Асинергии - выпадение физиологических синергичных (содружественных) движений при сложных двигательных актах.

Наиболее распространены следующие пробы на асинергию:

Больному, стоящему со сдвинутыми ногами, предлагают перегнуться назад. В норме одновременно с запрокидыванием головы ноги синергично сгибаются в коленных суставах, что позволяет сохранить устойчивость тела. При мозжечковой патологии содружественное движение в коленных суставах отсутствует и, запрокидывая голову назад, больной сразу же теряет равновесие и падает в том же направлении.

Больному, стоящему со сдвинутыми ногами, предлагается опереться на ладони врача, который затем неожиданно их убирает. При наличии у больного мозжечковой асинергии он падает вперёд (симптом Ожеховского ). В норме же происходит лёгкое отклонение корпуса назад или же человек сохраняет неподвижность.

Больному, лежащему на спине на твёрдой постели без подушки, с ногами, раздвинутыми на ширину надплечий, предлагают скрестить руки на груди и затем сесть. Ввиду отсутствия содружественных сокращений ягодичных мышц больной с мозжечковой патологией не может фиксировать ноги и таз к площади опоры, в результате сесть ему не удаётся, при этом ноги больного, отрываясь от постели, поднимаются вверх (асинергия по Бабинскому).

Влияние мозжечка на вегетативные функции. Мозжечок оказывает угнетающее и стимулирующее влияние на работу сердечно­сосудистой, дыхательной, пищеварительной и других систем организма. В результате двойственного влияния мозжечок стабилизи­рует, оптимизирует функции систем организма.

Сердечно-сосудистая система реагирует на раздражение мозжечка либо усилением (например, прессорные рефлексы), либо снижением этой реакции. Направленность реакции зависит от фона, на котором она вызывается. При раздражении мозжечка высокое кровяное давление снижается, а исходное низкое - повышается. Раздражение мозжечка на фоне учащенного дыхания (гиперпноэ) снижает частоту дыхания. При этом одностороннее раздражение мозжечка вызывает на своей стороне снижение, а на противоположной - повышение тонуса дыхательных мышц.

Удаление или повреждение мозжечка приводит к уменьшению тонуса мускулатуры кишечника, из-за низкого тонуса нарушается эвакуация содержимого желудка и кишечника. Нарушается также нормальная динамика секреции и всасывания в желудке и кишеч­нике.

Обменные процессы при повреждении мозжечка идут более интенсивно, гипергликемическая реакция (увеличение количества глюкозы в крови) на введение глюкозы в кровь или на прием ее с пищей возрастает и сохраняется дольше, чем в норме, ухудшается аппетит, наблюдается исхудание, замедляется заживление ран, волокна скелетных мышц подвергаются жировому перерождению.

При повреждении мозжечка нарушается генеративная функция, что проявляется в нарушении последовательности процессов родовой деятельности. При возбуждении или повреждении мозжечка мышечные сокращения, сосудистый тонус, обмен веществ и т. д. реагируют так же, как при активации или повреждении симпатического отдела вегетативной нервной системы.

Таким образом, мозжечок принимает участие в различных видах деятельности организма: моторной, соматической, вегетативной, сенсорной, интегративной и т. д. Однако эти функции мозжечок реализует через другие структуры центральной нервной системы. Мозжечок выполняет функцию оптимизации отношений между различными отделами нервной системы, что реализуется, с одной стороны, активацией отдельных центров, с другой - удержанием этой активности в определенных рамках возбуждения, лабильности и т. д. После частичного повреждения мозжечка могут сохраняться все функции организма, но сами функции, порядок их реализации, количественное соответствие потребностям трофики организма на­рушаются.

Таким образом, мозжечок играет первостепенную роль в регуляции позы и движений. Многие движения могут оптимально осуществляться только при участии мозжечка. В то же время он не принадлежит к числу жизненно важных органов, поскольку у людей, рожденных без мозжечка, отсутствуют серьезные двигательные нарушения. Мозжечок состоит из двух полушарий и имеет кору из серого вещества. В коре находятся клетки с многочисленными дендритами, получающие импульсы из многих источников, связанных с мышечной деятельностью: проприоцепторовсухожилий, суставов и мышц, а также от моторных центров коры. Поэтому мозжечок интегрирует информацию и координирует работу всех мышц, участвующих в движении или сохранении позы. При повреждении мозжечка движения становятся резкими, а не плавными. Мозжечок абсолютно необходим для координации быстрых движений таких, как бег, набор текста на клавиатуре, разговор.

Все функции мозжечка осуществляются без участия коры больших полушарий, т.е. бессознательно. Однако на ранних этапах онтогенеза или научения они могут включать элементы тренировки. В это время кора управляет мозжечком, и необходимы определенные волевые усилия для реализации двигательных актов. Например, это имеет место при обучении езде на велосипеде, плаванию и т.д. После же выработки и закрепления двигательных актов мозжечок берет на себя функцию контроля соответствующих рефлексов.

43. Нисходящие влияния ретикулярной формации. Её участие в регуляции мышечного тонуса.

Нисходящие влияния. В Р. ф. различают области, которые оказывают тормозящие и облегчающие влияния на двигательные реакцииспинного мозга.

При раздражении ретикулярной формации заднего мозга (особенно гигантоклеточной ядра продолговатого мозга и ретикулярного ядра моста, где принимают лочаток ретикулоспинальному пути), возникает торможение всех спинальных двигательных центров (сгибательных и разгибательных). Это торможение очень глубокое и продолжительное. Такое положение в естественных условиях может наблюдаться при глубоком сне.
Наряду с диффузными тормозящими влияниями, при раздражении определенных участков ретикулярной формации выявляется диффузный
влияние, которое облегчает деятельность спинальной двигательной системы.
Ретикулярная формация играет важную роль в регуляции деятельности мышечных веретен, изменяя частоту разрядов, поступающие гамма-эфферентными волокнами к мышцам. Таким образом модулируется обратная импульсация в них.