Производната на сложна функция е равна на. Производна на сложна функция. Производна на степенно-експоненциална функция

Решаването на физически задачи или примери по математика е напълно невъзможно без познаване на производната и методите за нейното изчисляване. Производната е едно от най-важните понятия в математическия анализ. Решихме да посветим днешната статия на тази основна тема. Какво е производна, какво е нейното физично и геометрично значение, как се изчислява производната на функция? Всички тези въпроси могат да бъдат комбинирани в един: как да разберем производната?

Геометрично и физическо значение на производната

Нека има функция f(x) , посочени в определен интервал (а, б) . Точките x и x0 принадлежат на този интервал. Когато x се промени, самата функция се променя. Промяна на аргумента - разликата в стойностите му х-х0 . Тази разлика се записва като делта х и се нарича увеличение на аргумента. Промяна или увеличение на функция е разликата между стойностите на функция в две точки. Дефиниция на производна:

Производната на функция в точка е границата на отношението на нарастването на функцията в дадена точка към нарастването на аргумента, когато последният клони към нула.

Иначе може да се напише така:

Какъв е смисълът да се намери такава граница? И ето какво е:

производната на функция в точка е равна на тангенса на ъгъла между оста OX и допирателната към графиката на функцията в дадена точка.


Физическо значение на производната: производната на пътя по време е равна на скоростта на праволинейно движение.

Всъщност още от ученическите дни всеки знае, че скоростта е особен път x=f(t) и време T . Средна скорост за определен период от време:

За да разберете скоростта на движение в даден момент t0 трябва да изчислите лимита:

Правило едно: задайте константа

Константата може да бъде извадена от знака за производна. Освен това това трябва да се направи. Когато решавате примери по математика, вземете го за правило - Ако можете да опростите израз, не забравяйте да го опростите .

Пример. Нека изчислим производната:

Второ правило: производна на сумата от функции

Производната на сумата от две функции е равна на сумата от производните на тези функции. Същото важи и за производната на разликата на функциите.

Няма да даваме доказателство на тази теорема, а по-скоро ще разгледаме практически пример.

Намерете производната на функцията:

Трето правило: производна на произведението на функциите

Производната на произведението на две диференцируеми функции се изчислява по формулата:

Пример: намерете производната на функция:

Решение:

Тук е важно да говорим за изчисляване на производни на сложни функции. Производната на сложна функция е равна на произведението на производната на тази функция по отношение на междинния аргумент и производната на междинния аргумент по отношение на независимата променлива.

В горния пример срещаме израза:

В този случай междинният аргумент е 8x на пета степен. За да изчислим производната на такъв израз, първо изчисляваме производната на външната функция по отношение на междинния аргумент и след това умножаваме по производната на самия междинен аргумент по отношение на независимата променлива.

Четвърто правило: производна на частното на две функции

Формула за определяне на производната на частното на две функции:

Опитахме се да говорим за производни за манекени от нулата. Тази тема не е толкова проста, колкото изглежда, така че бъдете предупредени: в примерите често има клопки, така че бъдете внимателни, когато изчислявате производни.

С всякакви въпроси по тази и други теми можете да се свържете със студентската служба. За кратко време ще ви помогнем да решите най-трудния тест и да разберете задачите, дори ако никога преди не сте правили производни изчисления.

Много лесен за запомняне.

Е, нека не отиваме далеч, нека веднага разгледаме обратната функция. Коя функция е обратна на експоненциалната функция? Логаритъм:

В нашия случай основата е числото:

Такъв логаритъм (т.е. логаритъм с основа) се нарича „естествен“ и ние използваме специална нотация за него: пишем вместо това.

На какво е равно? Разбира се, .

Производната на естествения логаритъм също е много проста:

Примери:

  1. Намерете производната на функцията.
  2. Каква е производната на функцията?

Отговори: Експоненциалният и естественият логаритъм са уникално прости функции от производна гледна точка. Експоненциалните и логаритмичните функции с всяка друга основа ще имат различна производна, която ще анализираме по-късно, след като преминем през правилата за диференциране.

Правила за диференциране

Правила на какво? Пак нов мандат, пак?!...

Диференциацияе процесът на намиране на производната.

Това е всичко. Как иначе можете да наречете този процес с една дума? Не производна... Математиците наричат ​​диференциала същото нарастване на функция при. Този термин идва от латинския differentia - разлика. Тук.

Когато извличаме всички тези правила, ще използваме две функции, например и. Ще ни трябват и формули за техните увеличения:

Има общо 5 правила.

Константата се изважда от знака за производна.

Ако - някакво постоянно число (константа), тогава.

Очевидно това правило работи и за разликата: .

Нека го докажем. Нека бъде или по-просто.

Примери.

Намерете производните на функциите:

  1. в точка;
  2. в точка;
  3. в точка;
  4. в точката.

Решения:

  1. (производната е една и съща във всички точки, тъй като е линейна функция, помните ли?);

Производно на продукта

Тук всичко е подобно: нека въведем нова функция и да намерим нейното увеличение:

Производна:

Примери:

  1. Намерете производните на функциите и;
  2. Намерете производната на функцията в точка.

Решения:

Производна на експоненциална функция

Сега знанията ви са достатъчни, за да научите как да намирате производната на всяка експоненциална функция, а не само на експоненти (забравили ли сте вече какво е това?).

И така, къде е някакво число.

Вече знаем производната на функцията, така че нека се опитаме да намалим нашата функция до нова основа:

За целта ще използваме едно просто правило: . Тогава:

Е, проработи. Сега опитайте да намерите производната и не забравяйте, че тази функция е сложна.

Се случи?

Ето, проверете сами:

Формулата се оказа много подобна на производната на експонента: както беше, остава същата, само се появи фактор, който е просто число, но не и променлива.

Примери:
Намерете производните на функциите:

Отговори:

Това е просто число, което не може да се изчисли без калкулатор, тоест не може да се запише в по-прост вид. Затова го оставяме в този вид в отговора.

    Имайте предвид, че тук е частното на две функции, така че прилагаме съответното правило за диференциране:

    В този пример продуктът на две функции:

Производна на логаритмична функция

Тук е подобно: вече знаете производната на естествения логаритъм:

Следователно, за да намерите произволен логаритъм с различна основа, например:

Трябва да намалим този логаритъм до основата. Как се променя основата на логаритъм? Надявам се, че помните тази формула:

Само сега вместо това ще напишем:

Знаменателят е просто константа (постоянно число, без променлива). Производната се получава много просто:

Производни на експоненциални и логаритмични функции почти никога не се срещат в Единния държавен изпит, но няма да е излишно да ги знаете.

Производна на сложна функция.

Какво е "сложна функция"? Не, това не е логаритъм и не е арктангенс. Тези функции могат да бъдат трудни за разбиране (въпреки че ако намирате логаритъма за труден, прочетете темата „Логаритми“ и ще се оправите), но от математическа гледна точка думата „комплексен“ не означава „труден“.

Представете си малка конвейерна лента: двама души седят и извършват някакви действия с някакви предмети. Например, първият увива шоколадово блокче в обвивка, а вторият го завързва с панделка. Резултатът е съставен обект: шоколадово блокче, увито и завързано с панделка. За да изядете блокче шоколад, трябва да направите обратните стъпки в обратен ред.

Нека създадем подобен математически конвейер: първо ще намерим косинуса на число и след това ще повдигнем на квадрат полученото число. И така, получаваме число (шоколад), аз намирам неговия косинус (обвивка), а след това вие повдигате на квадрат полученото (завързвате го с панделка). Какво стана? функция. Това е пример за сложна функция: когато, за да намерим нейната стойност, извършваме първото действие директно с променливата и след това второ действие с това, което е резултат от първото.

С други думи, сложна функция е функция, чийто аргумент е друга функция: .

За нашия пример,.

Можем лесно да направим същите стъпки в обратен ред: първо го повдигате на квадрат, а аз след това търся косинуса на полученото число: . Лесно е да се досетите, че резултатът почти винаги ще бъде различен. Важна характеристика на сложните функции: когато редът на действията се промени, функцията се променя.

Втори пример: (същото нещо). .

Действието, което извършваме последно, ще бъде извикано "външна" функция, а първо извършеното действие - съотв "вътрешна" функция(това са неофициални имена, използвам ги само за да обясня материала на прост език).

Опитайте се да определите сами коя функция е външна и коя вътрешна:

Отговори:Разделянето на вътрешни и външни функции е много подобно на промяната на променливи: например във функция

  1. Какво действие ще извършим първо? Първо, нека изчислим синуса и едва след това го кубираме. Това означава, че това е вътрешна функция, но външна.
    И първоначалната функция е тяхната композиция: .
  2. Вътрешен: ; външен: .
    Преглед: .
  3. Вътрешен: ; външен: .
    Преглед: .
  4. Вътрешен: ; външен: .
    Преглед: .
  5. Вътрешен: ; външен: .
    Преглед: .

Променяме променливи и получаваме функция.

Е, сега ще извлечем нашето шоколадово блокче и ще потърсим производната. Процедурата винаги е обратна: първо търсим производната на външната функция, след това умножаваме резултата по производната на вътрешната функция. Във връзка с оригиналния пример изглежда така:

Друг пример:

И така, нека най-накрая формулираме официалното правило:

Алгоритъм за намиране на производната на сложна функция:

Изглежда просто, нали?

Нека проверим с примери:

Решения:

1) Вътрешен: ;

Външен: ;

2) Вътрешен: ;

(Само не се опитвайте да го отрежете досега! Нищо не излиза изпод косинуса, помните ли?)

3) Вътрешен: ;

Външен: ;

Веднага става ясно, че това е сложна функция на три нива: в крайна сметка това вече е сложна функция сама по себе си и ние също извличаме корена от нея, тоест извършваме третото действие (поставете шоколада в обвивка и с панделка в куфарчето). Но няма причина да се страхувате: ние все пак ще „разопаковаме“ тази функция в същия ред, както обикновено: от края.

Тоест, първо диференцираме корена, след това косинуса и едва след това израза в скоби. И след това умножаваме всичко.

В такива случаи е удобно действията да се номерират. Тоест нека си представим това, което знаем. В какъв ред ще извършим действия за изчисляване на стойността на този израз? Да разгледаме един пример:

Колкото по-късно се извърши действието, толкова по-„външна“ ще бъде съответната функция. Последователността на действията е същата като преди:

Тук гнезденето обикновено е 4-степенно. Да определим хода на действие.

1. Радикален израз. .

2. Корен. .

3. Синус. .

4. Квадрат. .

5. Събираме всичко заедно:

ПРОИЗВОДНО. НАКРАТКО ЗА ГЛАВНОТО

Производна на функция- отношението на нарастването на функцията към увеличението на аргумента за безкрайно малко увеличение на аргумента:

Основни производни:

Правила за диференциация:

Константата се изважда от знака за производна:

Производна на сумата:

Производно на продукта:

Производна на коефициента:

Производна на сложна функция:

Алгоритъм за намиране на производната на сложна функция:

  1. Дефинираме „вътрешната“ функция и намираме нейната производна.
  2. Дефинираме „външната“ функция и намираме нейната производна.
  3. Умножаваме резултатите от първа и втора точка.

Дадени са примери за изчисляване на производни по формулата за производна на сложна функция.

Съдържание

Вижте също: Доказателство на формулата за производна на комплексна функция

Основни формули

Тук даваме примери за изчисляване на производни на следните функции:
; ; ; ; .

Ако една функция може да бъде представена като сложна функция в следната форма:
,
тогава неговата производна се определя по формулата:
.
В примерите по-долу ще запишем тази формула, както следва:
.
Където .
Тук индексите или , разположени под знака за производна, означават променливите, по които се извършва диференциацията.

Обикновено в таблиците с производни се дават производни на функции от променливата x. Въпреки това, x е формален параметър. Променливата x може да бъде заменена с всяка друга променлива. Следователно, когато диференцираме функция от променлива, ние просто променяме в таблицата с производни променливата x на променливата u.

Прости примери

Пример 1

Намерете производната на сложна функция
.

Нека напишем дадената функция в еквивалентна форма:
.
В таблицата с производни намираме:
;
.

Според формулата за производна на сложна функция имаме:
.
Тук .

Пример 2

Намерете производната
.

Изваждаме константата 5 от знака за производна и от таблицата с производни намираме:
.


.
Тук .

Пример 3

Намерете производната
.

Изваждаме константа -1 за знака на производната и от таблицата на производните намираме:
;
От таблицата на производните намираме:
.

Прилагаме формулата за производна на сложна функция:
.
Тук .

По-сложни примери

В по-сложни примери прилагаме правилото за диференциране на сложна функция няколко пъти. В този случай изчисляваме производната от края. Тоест, ние разделяме функцията на нейните съставни части и намираме производните на най-простите части, използвайки таблица с производни. Ние също използваме правила за диференциране на суми, продукти и фракции. След това правим замествания и прилагаме формулата за производната на сложна функция.

Пример 4

Намерете производната
.

Нека изберем най-простата част от формулата и да намерим нейната производна. .



.
Тук сме използвали нотацията
.

Намираме производната на следващата част от оригиналната функция, използвайки получените резултати. Прилагаме правилото за диференциране на сбора:
.

Още веднъж прилагаме правилото за диференциране на сложни функции.

.
Тук .

Пример 5

Намерете производната на функцията
.

Нека изберем най-простата част от формулата и да намерим нейната производна от таблицата с производни. .

Прилагаме правилото за диференциране на сложни функции.
.
Тук
.

Нека разграничим следващата част, използвайки получените резултати.
.
Тук
.

Нека разграничим следващата част.

.
Тук
.

Сега намираме производната на желаната функция.

.
Тук
.

Вижте също:

Този урок е посветен на темата „Диференциране на сложни функции. Задача от практиката на подготовка за Единния държавен изпит по математика. Този урок изследва диференцирането на сложни функции. Съставя се таблица с производни на сложна функция. Освен това се разглежда пример за решаване на задача от практиката за подготовка за Единния държавен изпит по математика.

Тема: Производна

Урок: Диференциране на сложна функция. Практическа задача за подготовка за Единен държавен изпит по математика

Комплексфункцияние вече диференцирахме, но аргументът беше линейна функция, а именно знаем как да диференцираме функцията. Например, . Сега по същия начин ще намерим производни на сложна функция, където вместо линейна функция може да има друга функция.

Да започнем с функцията

И така, намерихме производната на синуса от сложна функция, където аргументът на синуса беше квадратна функция.

Ако трябва да намерите стойността на производната в определена точка, тогава тази точка трябва да бъде заменена в намерената производна.

И така, в два примера видяхме как работи правилото диференциациякомплекс функции.

2.

3. . Нека ви напомним, че.

7.

8. .

Така ще завършим таблицата за диференциране на сложни функции на този етап. Освен това, разбира се, ще бъде обобщено още повече, но сега нека преминем към конкретни проблеми на производната.

В практиката за подготовка за Единния държавен изпит се предлагат следните задачи.

Намерете минимума на функция .

ODZ: .

Нека намерим производната. Нека припомним, че .

Нека приравним производната на нула. Точката е включена в ОДЗ.

Нека намерим интервалите с постоянен знак на производната (интервали на монотонност на функцията) (виж фиг. 1).

Ориз. 1. Интервали на монотонност за функция .

Нека да разгледаме една точка и да разберем дали тя е точка на екстремум. Достатъчен знак за екстремум е, че производната променя знака при преминаване през точка. В този случай производната променя знака, което означава, че е точка на екстремум. Тъй като производната променя знака от „-“ на „+“, тогава това е минималната точка. Нека намерим стойността на функцията в минималната точка: . Нека начертаем диаграма (виж фиг. 2).

Фиг.2. Екстремум на функцията .

На интервал - функцията намалява, на - функцията нараства, екстремната точка е единствена. Функцията приема най-малката си стойност само в точката .

По време на урока разгледахме диференцирането на сложни функции, съставихме таблица и разгледахме правилата за диференциране на сложна функция и дадохме пример за използване на производна от практиката за подготовка за Единния държавен изпит.

1. Алгебра и начало на анализа, 10 клас (в две части). Учебник за общообразователни институции (ниво на профил), изд. А. Г. Мордкович. -М .: Мнемозина, 2009.

2. Алгебра и начало на анализа, 10 клас (в две части). Проблемна книга за образователни институции (ниво на профил), изд. А. Г. Мордкович. -М .: Мнемозина, 2007.

3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математически анализ за 10 клас (учебник за ученици от училища и класове със задълбочено изучаване на математика) - М.: Просвещение, 1996.

4. Галицки М.Л., Мошкович М.М., Шварцбурд С.И. Задълбочено изучаване на алгебра и математически анализ.-М .: Образование, 1997.

5. Сборник от задачи по математика за кандидати за висши учебни заведения (под редакцията на М. И. Сканави - М.: Висше училище, 1992 г.).

6. Мерзляк А.Г., Полонски В.Б., Якир М.С. Алгебричен симулатор.-К.: А.С.К., 1997г.

7. Zvavich L.I., Shlyapochnik L.Ya., Чинкина Алгебра и началото на анализа. 8-11 клас: Наръчник за училища и класове със задълбочено изучаване на математика (дидактически материали). - М.: Дропла, 2002.

8. Саакян С.М., Голдман А.М., Денисов Д.В. Проблеми по алгебра и принципи на анализ (ръководство за ученици от 10-11 клас на общообразователните институции - М.: Просвещение, 2003 г.).

9. Карп А.П. Сборник задачи по алгебра и принципи на анализа: учебник. помощ за 10-11 клас. с дълбочина изучавани Математика.-М .: Образование, 2006.

10. Глейзър Г.И. История на математиката в училище. 9-10 клас (наръчник за учители).-М .: Образование, 1983

Допълнителни уеб ресурси

2. Портал за природни науки ().

Направете го у дома

№ 42.2, 42.3 (Алгебра и начало на анализа, 10 клас (в две части). Проблемна книга за общообразователни институции (ниво на профил) под редакцията на А. Г. Мордкович. - М.: Мнемозина, 2007.)

Ако следвате дефиницията, тогава производната на функция в точка е границата на съотношението на нарастването на функцията Δ гкъм увеличението на аргумента Δ х:

Всичко изглежда ясно. Но опитайте да използвате тази формула, за да изчислите, да речем, производната на функцията f(х) = х 2 + (2х+ 3) · д хгрях х. Ако правите всичко по дефиниция, тогава след няколко страници изчисления просто ще заспите. Следователно има по-прости и по-ефективни начини.

Като начало отбелязваме, че от цялото разнообразие от функции можем да различим така наречените елементарни функции. Това са сравнително прости изрази, чиито производни отдавна са изчислени и въведени в таблицата. Такива функции са доста лесни за запомняне - заедно с техните производни.

Производни на елементарни функции

Елементарни функции са всички изброени по-долу. Производните на тези функции трябва да се знаят наизуст. Освен това не е никак трудно да ги запомните - затова са елементарни.

И така, производни на елементарни функции:

Име функция Производна
Константа f(х) = ° С, ° СР 0 (да, нула!)
Степен с рационален показател f(х) = х н н · х н − 1
синусите f(х) = грях х cos х
Косинус f(х) = cos х − грях х(минус синус)
Допирателна f(х) = tg х 1/cos 2 х
Котангенс f(х) = ctg х − 1/грех 2 х
Натурален логаритъм f(х) = дневник х 1/х
Произволен логаритъм f(х) = дневник а х 1/(хвътре а)
Експоненциална функция f(х) = д х д х(Нищо не се промени)

Ако една елементарна функция се умножи по произволна константа, тогава производната на новата функция също се изчислява лесно:

(° С · f)’ = ° С · f ’.

По принцип константите могат да бъдат извадени от знака на производната. Например:

(2х 3)’ = 2 · ( х 3)’ = 2 3 х 2 = 6х 2 .

Очевидно елементарните функции могат да се добавят една към друга, умножават, разделят - и много повече. Така ще се появят нови функции, вече не особено елементарни, но и диференцирани по определени правила. Тези правила са обсъдени по-долу.

Производна на сбор и разлика

Нека функциите са дадени f(х) И ж(х), чиито производни са ни известни. Например можете да вземете елементарните функции, обсъдени по-горе. След това можете да намерите производната на сбора и разликата на тези функции:

  1. (f + ж)’ = f ’ + ж
  2. (fж)’ = f ’ − ж

И така, производната на сумата (разликата) на две функции е равна на сумата (разликата) на производните. Възможно е да има повече термини. Например, ( f + ж + ч)’ = f ’ + ж ’ + ч ’.

Строго погледнато, в алгебрата няма концепция за „изваждане“. Съществува понятието „отрицателен елемент“. Следователно разликата fжможе да се пренапише като сума f+ (−1) ж, и тогава остава само една формула - производната на сумата.

f(х) = х 2 + sin x; ж(х) = х 4 + 2х 2 − 3.

функция f(х) е сумата от две елементарни функции, следователно:

f ’(х) = (х 2 + грях х)’ = (х 2)’ + (грех х)’ = 2х+ cos x;

Разсъждаваме по подобен начин за функцията ж(х). Само че вече има три термина (от гледна точка на алгебрата):

ж ’(х) = (х 4 + 2х 2 − 3)’ = (х 4 + 2х 2 + (−3))’ = (х 4)’ + (2х 2)’ + (−3)’ = 4х 3 + 4х + 0 = 4х · ( х 2 + 1).

Отговор:
f ’(х) = 2х+ cos x;
ж ’(х) = 4х · ( х 2 + 1).

Производно на продукта

Математиката е логическа наука, така че много хора вярват, че ако производната на дадена сума е равна на сумата от производните, тогава производната на произведението стачка">равно на произведението на производните. Но майната ви! Производната на продукт се изчислява по съвсем различна формула. А именно:

(f · ж) ’ = f ’ · ж + f · ж

Формулата е проста, но често се забравя. И не само ученици, но и студенти. Резултатът е неправилно решени задачи.

Задача. Намерете производни на функции: f(х) = х 3 cos x; ж(х) = (х 2 + 7х− 7) · д х .

функция f(х) е продукт на две елементарни функции, така че всичко е просто:

f ’(х) = (х 3 cos х)’ = (х 3)’ cos х + х 3 (cos х)’ = 3х 2 cos х + х 3 (− грях х) = х 2 (3 cos ххгрях х)

функция ж(х) първият множител е малко по-сложен, но общата схема не се променя. Очевидно първият фактор на функцията ж(х) е полином и неговата производна е производната на сумата. Ние имаме:

ж ’(х) = ((х 2 + 7х− 7) · д х)’ = (х 2 + 7х− 7)’ · д х + (х 2 + 7х− 7) · ( д х)’ = (2х+ 7) · д х + (х 2 + 7х− 7) · д х = д х· (2 х + 7 + х 2 + 7х −7) = (х 2 + 9х) · д х = х(х+ 9) · д х .

Отговор:
f ’(х) = х 2 (3 cos ххгрях х);
ж ’(х) = х(х+ 9) · д х .

Моля, обърнете внимание, че в последната стъпка производната се факторизира. Формално това не е необходимо да се прави, но повечето производни не се изчисляват самостоятелно, а за изследване на функцията. Това означава, че по-нататък производната ще бъде приравнена на нула, нейните знаци ще бъдат определени и т.н. За такъв случай е по-добре да имате факторизиран израз.

Ако има две функции f(х) И ж(х), и ж(х) ≠ 0 на множеството, което ни интересува, можем да дефинираме нова функция ч(х) = f(х)/ж(х). За такава функция можете също да намерите производната:

Не е слаб, а? Откъде дойде минусът? Защо ж 2? И така! Това е една от най-сложните формули - не можете да я разберете без бутилка. Затова е по-добре да го изучавате с конкретни примери.

Задача. Намерете производни на функции:

Числителят и знаменателят на всяка дроб съдържат елементарни функции, така че всичко, от което се нуждаем, е формулата за производната на частното:


Според традицията, нека разложим числителя на множители - това значително ще опрости отговора:

Сложната функция не е непременно дълга половин километър формула. Например, достатъчно е да вземете функцията f(х) = грях хи заменете променливата х, да речем, на х 2 + ин х. Ще се получи f(х) = грях ( х 2 + ин х) - това е сложна функция. Той също има производно, но няма да е възможно да го намерите с помощта на обсъдените по-горе правила.

Какво трябва да направя? В такива случаи замяната на променлива и формула за производна на сложна функция помага:

f ’(х) = f ’(T) · T', Ако хсе заменя с T(х).

По правило ситуацията с разбирането на тази формула е още по-тъжна, отколкото с производната на коефициента. Затова е по-добре да го обясните с конкретни примери, с подробно описание на всяка стъпка.

Задача. Намерете производни на функции: f(х) = д 2х + 3 ; ж(х) = грях ( х 2 + ин х)

Имайте предвид, че ако във функцията f(х) вместо израз 2 х+ 3 ще бъде лесно х, тогава получаваме елементарна функция f(х) = д х. Затова правим замяна: нека 2 х + 3 = T, f(х) = f(T) = д T. Търсим производната на сложна функция по формулата:

f ’(х) = f ’(T) · T ’ = (д T)’ · T ’ = д T · T

А сега - внимание! Извършваме обратната замяна: T = 2х+ 3. Получаваме:

f ’(х) = д T · T ’ = д 2х+ 3 (2 х + 3)’ = д 2х+ 3 2 = 2 д 2х + 3

Сега нека да разгледаме функцията ж(х). Очевидно трябва да се смени х 2 + ин х = T. Ние имаме:

ж ’(х) = ж ’(T) · T’ = (грех T)’ · T’ = cos T · T

Обратна замяна: T = х 2 + ин х. Тогава:

ж ’(х) = cos ( х 2 + ин х) · ( х 2 + ин х)’ = cos ( х 2 + ин х) · (2 х + 1/х).

Това е всичко! Както се вижда от последния израз, цялата задача е сведена до изчисляване на производната сума.

Отговор:
f ’(х) = 2 · д 2х + 3 ;
ж ’(х) = (2х + 1/х) защото ( х 2 + ин х).

Много често в уроците си, вместо термина „производна“, използвам думата „просто“. Например ударът на сбора е равен на сбора от ударите. Това по-ясно ли е? Е, това е добре.

По този начин изчисляването на производната се свежда до премахване на същите тези удари според правилата, обсъдени по-горе. Като последен пример, нека се върнем към производната степен с рационален показател:

(х н)’ = н · х н − 1

Малко хора знаят това в ролята нможе и да е дробно число. Например коренът е х 0,5. Ами ако има нещо фантастично под корена? Отново резултатът ще е сложна функция - те обичат да дават такива конструкции на контролни и изпити.

Задача. Намерете производната на функцията:

Първо, нека пренапишем корена като степен с рационален показател:

f(х) = (х 2 + 8х − 7) 0,5 .

Сега правим замяна: нека х 2 + 8х − 7 = T. Намираме производната по формулата:

f ’(х) = f ’(T) · T ’ = (T 0,5)’ · T’ = 0,5 · T−0,5 · T ’.

Нека направим обратната замяна: T = х 2 + 8х− 7. Имаме:

f ’(х) = 0,5 · ( х 2 + 8х− 7) −0,5 · ( х 2 + 8х− 7)’ = 0,5 · (2 х+ 8) ( х 2 + 8х − 7) −0,5 .

И накрая, обратно към корените: