Рекуррентные методы. Общие и частные решения рекуррентных соотношений Вычислить определители порядка n методом рекуррентных соотношений

При большом объеме совокупности данных наблюдения х конечные методы решения уравнения правдоподобия приводят к значительным вычислительным трудностям, связанным с необходимостью запомина­ния большого числа исходных данных и промежуточных результатов вычислений. В связи с этим особый интерес представляют рекуррентные методы, в которых оценка максимального правдоподобия вычисляется по шагам с постепенно увеличивающейся точностью, причем каждый шаг связан с получением новых данных наблюдения, а рекуррентная проце­дура строится так, чтобы хранить в памяти по возможности наименьшее количество данных от предыдущих шагов. Дополнительным и весьма существенным с практической точки зрения преимуществом рекуррент­ных методов является готовность к выдаче результата на любом про­межуточном шаге.

Это обусловливает целесообразность применения рекуррентных ме­тодов даже в тех случаях, если удается получить точное решение урав­нения максимального правдоподобия конечным методом, и делает их еще более ценными, когда невозможно найти точное аналитическое вы­ражение для оценки максимального правдоподобия.

Пусть совокупность данных наблюдения представляет собой по­следовательность для описания которой введем вектор . (Как всегда, каждая его компонента , в свою очередь, может быть вектором, отрезком случайного процесса и т. д.). Пусть - функция правдоподобия, а

ее логарифм. Последний всегда можно представить в виде

Логарифм функции правдоподобия для совокупности данных наблю­дения без последнего значения, а

Логарифм условной плотности вероятности значения при заданных значениях и .

Представление (7,5.16) для логарифма функции правдоподобия яв­ляется основой для получения рекуррентной процедуры вычисления оценки максимального правдоподобия. Рассмотрим регулярный случай. При этом оценка максимального правдоподобия может быть найдена как решение уравнения

которое отличается от (7.1.6) только введением индекса п у логарифма функции правдоподобия.

Обозначим решение этого уравнения через подчеркнув тем са­мым, что эта оценка получена по совокупности данных наблюдения . Аналогично обозначим через решение уравнения- оценку максимального правдоподобия, полученную по совокупности данных .

Уравнение (7.5.19) можно переписать с учетом (7.5.16) в следующем виде:

Разложим левую часть (7.5.20) в ряд Тейлора в окрестности точки . При этом

(7.5.22)

Вектор градиента функции в точке ; слагаемое обращается в нуль благодаря тому, что , является решением уравнения правдоподобия для предыдущего (п - 1)-го шага:


Симметричная матрица вторых производных логарифма функции правдоподобия в точке , взятая с обратным знаком, аненапи­санные члены разложения имеют квадратичный и более высокий поря­док малости относительно разности . Пренебрегая этими по­следними, получаем следующее приближенное решение уравнения ма­ксимального правдоподобия:

где - матрица, обратная .

Это решение представлено в форме рекуррентного соотношения, определяющего очередное значение оценки через оценку на предыдущем шаге и поправку , зависящую от имеющихся данных наблюдения непосредственно и через предыдущую оценку. Поправка формируется как произведение градиента логарифма условной плотно­сти вероятности вновь полученного значения х n в точке , равной предыдущей оценке, на весовую матрицу . По­следняя определяется выражением (7.5.23) и также зависит от оценки на предыдущем шаге, а ее зависимость от новых данных наблюдения целиком определяется видом логарифма условной плотности веро­ятности .

По форме соотношение (7.5.24) очень похоже на (7.5.8), реализую­щее итеративный способ вычисления оценки максимального правдоподо­бия по методу Ньютона. Однако на самом деле они существенно отли­чаются друг от друга. В (7.5.8) поправка к предыдущему значению оцен­ки определяется величиной градиента логарифма всей функции правдо­подобия, который всегда зависит от всех имеющихся данных наблюде­ния , что требует запоминания всей этой совокупности. В соответствии с (7.5.24) поправка к определяется величиной гра­диента , который благодаря свойствам условной плотности вероятностифактически зависит только от тех значений (), которые находятся в сильной статистической связи с х n . Это различие является следствием специального выбора предыдущего приближения как оценки максимального правдоподобия, найденной по уменьшенной на одно значение совокупности данных наблюдения , и особенно ярко проявляется при независимых значениях (). В этом последнем случае

благодаря чему зависит только от и х n , а градиент - только от предыдущего значения оценки и вновь полученных на п- мшаге данных наблюдения . Поэтому при незави­симых значениях для формирования вектора не требуется запо­минать с предыдущего шага никакой иной информации, кроме значения оценки .

Аналогично, в случае марковской последовательности данных на­блюдения, то есть при

вектор зависит только от , текущего и одного предыдущего значения .В этом случае для вычисления требуется запомнить с предыдущего шага, помимо значения , еще только значение , но не всю совокупность данных наблюдения, как в ите­ративной процедуре. В общем случае для вычисления может потребоваться запоминание большего числа предыдущих значений (), однако из-за необходимости учета только тех значе­ний , которые статистически зависимы с , это число практически всегда меньше полного объема совокупности данных наблюдения . Так, если вектор описывает временную последователь­ность, то количество подлежащих запоминанию членов этой последова­тельности определяется временем ее корреляции, а относительная их доля убывает обратно пропорционально n , как и в случае независимых значений .

Рассмотрим теперь структуру весовой матрицы , входящей в ре­куррентное соотношение (7.5.24). Согласно определению (7.5.23), из-за наличия слагаемого она, вообще говоря, зависит от всех значений даже при независимых значениях , что ли­шает рекуррентное соотношение (7.5.24) преимуществ, связанных с воз­можным сокращением количества запоминаемых с предыдущего шага данных. Существует несколько способов приближенного вычисления ма­трицы , которые устраняют этот недостаток.

Первый из них основан на более последовательном использовании основного предположения о малом различии двух очередных значений оценки и , которое является основой для получения рекур­рентного соотношения (7.5.24). Это позволяет получить аналогичное ре­куррентное соотношение для весовой матрицы .Действительно, используя малость из (7.5.23), имеем

Введя обозначение

из (7.5.24) и (7.5.25) получим систему рекуррентных соотношений для вектора и весовой матрицы

Эта система совместно с начальными значениями и полностью определяет значение оценки на любом шаге, требуя на каждом из них вычисления только градиента и матрицы вторых производных от логарифма условной плотности вероятности для текущего наблюдаемого значения . Начальные значе­ния выбираются с учетом имеющихся априорных данных о возможных значениях и диапазоне изменения параметров , а при полном отсутст­вии этих данных принимаются нулевыми (,).

При независимых значениях система рекуррентных соотношений (7.5.27), очевидно, описывает многомерный (размерности ) марковский случайный процесс, компонента которого сходит­ся к истинному значению параметра , а компонента сходится к ин­формационной матрице Фишера (7.3.8), где - истинное значение оцениваемого параметра, и неограниченно увеличивается с ростом п. Аналогичные свойства сходимости система (7.5.27) имеет и при более общихусловиях, если последовательность явля­ется эргодической.

Второй из упомянутых способов основан на замене матрицы вторых производных от логарифма функции правдоподобия ее матема­тическим ожиданием - информационной матрицей Фишера, которая с учетом (7.5.16) может быть записана в виде:

где аналогично (7.5.26)

Заменяя в (7.5.24) матрицу матрицей , получаем ре­куррентное соотношение

для приближенного вычисления оценок максимального правдоподобия, предложенное Сакрисоном (в оригинале для независимых одина­ково распределенных , когда и . Это рекуррентное соотношение проще системы (7.5.27), поскольку оптимальная весовая матрица заменена ее мате­матическим ожиданием, и для ее нахождения не требуются имеющиеся данные наблюдения, кроме тех, которые сконцентрированы в значении оценки . В то же время очевидно, что подобная замена означает необходимость выполнения дополнительного по сравнению с (7.5.27) требования близости матрицы вторых производных к своему математи­ческому ожиданию.

Если плотность распределения вероятности и матри­ца меняются от шага к шагу, прямое нахождение на каждом шаге может потребовать слишком большого числа вычисле­ний. При этом за счет дополнительного уменьшения точности ре­зультатов, определяемого неравенством нулю малых разностей , можно перейти к рекуррентному вычислению приближен­ного значения матрицы . Возвращаясь к прежнему обозначе­нию для этого приближенного значения, получаем еще одну систему рекуррентных соотношений

Математическое ожидание матрицы (информационная матри­ца Фишера для одного наблюдения ), взятое в точке . Эта система отличается от (7.5.27) тем, что во втором из рекуррентных соот­ношений (7.5.31) не участвуют непосредственно данные наблюдения .


Любая из рассмотренных выше систем рекуррентных соотношений является совершенно точной, если функция квадратично зависит от , и дополнительно матрица вторых производных не зависит от . Фактически это соответствует случаю независимых нормально рас­пределенных (не обязательно одинаково) значений с неизвестным математическим ожиданием , которое и представляет собой оценивае­мый параметр.

Система рекуррентных соотношений (7.5.24) дает точное решение уравнения максимального правдоподобия в гораздо более широких условиях при единственном требовании, чтобы функция квадра­тично зависела от . При этом зависимость от произвольна, что соответствует широкому классу распределений вероятности совокуп­ности как с независимыми, так и с зависимыми значениями.

Наряду с рассмотренными общими способами существует еще ряд методов выбора матрицы весовых коэффициентов в рекуррентном соотношении (7.5.24), приспособленных к тем или иным конкретным ограничениям. Простейшим из них является выбор в виде диагональной матрицы, так что , (I - единичная матрица), где - убывающая последовательность чис­ловых коэффициентов, выбираемая независимо от свойств функции правдоподобия так же, как в процедуре стохастической аппроксимации Робинса - Монро, которая будет рассмотрена в следующих главах.

Стоит отметить, что любые итерационные или рекуррентные про­цедуры нахождения оценок максимального правдоподобия в общем случае являются приближенными. Поэтому, вообще говоря, для оценок, получающихся в результате применения этих процедур, состоятельность, асимптотическую эффективность и асимптотическую нормальность нуж­но доказывать заново. Для итеративных процедур необходимые свой­ства оценок гарантируются тем, что в принципе такие процедуры при соответствующем числе итераций дают решение уравнения правдоподо­бия с любой наперед заданной точностью. Для рекуррентных процедур типа (7.5.27), (7.5.30), (7.5.31) и других имеются специальные доказа­тельства. При этом, помимо требования регулярности, предъявляются некоторые дополнительные требования:

На поведение функции (7.2.2) при различных значениях ||, для достижения с помощью рекуррентной процедуры глобаль­ного максимума этой функции в точке , соответствующей истинно­му значению параметра;

На порядок роста вторых моментов производных логарифма функции правдоподобия при больших по модулю значениях . Эти тре­бования являются следствием более общих усло­вий сходимости в точку всех или части компонент марковского случай­ного процесса, к которому приводит та или иная рекуррентная про­цедура.

В заключение отметим также, что в том случае, когда существует точное решение уравнения максимального правдоподобия, оно практиче­ски всегда может быть представлено в рекуррентном виде. Приведем два простых разнородных примера. Так, элементарная оценка неизвест­ного математического ожидания нормальной случайной величины по совокупности n ее выборочных значений в виде арифме­тического среднего


является оценкой максимального правдоподобия и может быть пред­ставлена в рекуррентном виде:

что является самым простым частным случаем (7.5.30) при



Другой пример - это нерегулярная оценка максимального правдо­подобия для параметра - ширины прямоугольного распределения – из (7.4.2), которая также может быть определена рекуррентным соот­ношением

с начальным условием . Это рекуррентное соотношение уже дру­гого типа: его правую часть нельзя представить в виде суммы предыду­щей оценки и малой поправки, что является следствием нерегулярности этого примера; однако оно обладает всеми преимуществами рекуррент­ного подхода: требует запоминания с предыдущего шага всего одного числа - оценки - и резко сокращает перебор до одного сравнения свместо сравнения всех значений .

Приведенные примеры иллюстрируют преимущества рекуррентных методов даже в том случае, когда уравнение максимального правдопо­добия допускает точное решение, ибо простота аналитического пред­ставления результата не тождественна вычислительной простоте его по­лучения.

7.5.3. Переход к непрерывному времени. Дифференциальные уравнения для оценок максимального правдоподобия

Рассмотрим теперь специальный случай, когда имеющиеся данные наблюдения х описываются не совокупностью выборочных точек , а представляют собой отрезок реализации некоторого процесса , зависящего от параметров , заданный на интервале , при­чем длина этого интервала может увеличиваться при наблюдении (мо­мент времени t является переменным).

Для статистического описания данных наблюдения в этом случае вводится функционал отношения правдоподобия, представляющий собой предел при , maxотношения плотности распределе­ния вероятности совокупности значений при произ­вольно заданном значении к аналогичной плотности вероятности при некотором фиксированном значении , а в некоторых случаях, когда допускает представление , где - случай­ный процесс, не зависящий от , к плотности вероятности совокупности значений при условии, что . Использование функционала отношения правдоподобия позволяет исключить формальные труд­ности определения плотности вероятности, возникающие при переходе к непрерывному времени.

Логарифм функционала отношения правдоподобия может быть представлен в виде

где - некоторый функционал процесса на интервале . В некоторых случаях функционал вырождается в функ­цию, зависящую только от значения . Так, если



где - известная функция времени и параметров , а - дельта-коррелированный случайный процесс («белый» шум) со спек­тральной плотностью N o ,то, выбирая в качестве знаменателя отношения правдоподобия распределения вероятности х при , будем иметь



Пусть - оценка максимального правдоподобия параметра , построенная по реализации процесса на интервале ,то есть решение уравнения максимального правдоподобия



Дифференцируя левую часть этого уравнения по времени, получаем


Вводя обозначения

и решая уравнение (7.5.42) относительно , получаем диффе­ренциальное уравнение для оценки максимального правдоподобия

Матрица , в свою очередь, согласно (7.5.37) определяется диффе­ренциальным уравнением



Так же, как в дискретном случае, матрица в (7.5.45), (7.5.47) мо­жет быть заменена своим математическим ожиданием - информационной матрицей Фишера при значении , а диф­ференциальное уравнение (7.5.46) для весовой матрицы - урав­нением


где аналогично дискретному случаю

Математическое ожидание матрицы вторых производных .

Совокупность дифференциальных уравнений (7.5.45), (7.5.46) или (7.5.45), (7.5.48) совместно с начальными условиями, относительно вы­бора которых остается в силе все сказанное для дискретного случая, полностью определяет оценку максимального правдоподобия для любого момента времени. Эта совокупность может быть смоделирована с помощью соответствующих, вообще говоря, нелинейных аналоговых устройств или при подходящей дискретизации по времени решена с по­мощью ЭВМ. Отметим в заключение одну из модификаций этих урав­нений, позволяющую избежать необходимости обращения матрицы .

Вводя обозначение

, где I


и дифференцируя по времени соотношение , где I - единич­ная матрица, получаем с помощью (7.5.46) дифференциальное уравне­ние, определяющее непосредственно матрицу :



(и аналогично при замене на ), которое совместно с уравнением (7.5.45)

определяет оценку , не требуя обращения матриц. При этом имеет место переход от простейшего линейного дифференциального уравнения (7.5.46) к нелинейному относительно дифференциальному уравне­нию (7.5.51) типа Риккати.

Комбинаторные вычисления на конечных множествах

Введение в комбинаторику

Предметом теории комбинаторных алгоритмов, часто называемой комбинаторными вычислениями, являются вычисления на дискретных математических структурах. В этой теории большое внимание уделяется алгоритмическому подходу к решению задач дискретной математики, оптимизации перебора вариантов, сокращению числа рассматриваемых решений.

Область комбинаторных алгоритмов включает в себя задачи, которые требуют подсчёта (оценивания) числа элементов в конечном множестве или перечисления этих элементов в специальном порядке (приложение Б). При этом широко применяется процедура выбора элементов с возвращением и её варианты.

Существуют два вида задач подсчёта. В простом случае задаётся конкретное множество и требуется определить точно число элементов в нём. В общем случае имеется семейство множеств, заданное некоторым параметром, и определяется мощность множества как функция параметра. При этом часто бывает достаточной оценка порядка функции , а иногда требуется только оценка скорости её роста . Например, если мощность подлежащего рассмотрению множества растёт по некоторому параметру экспоненциально, то этого может оказаться достаточно для того, чтобы отказаться от предложенного подхода к изучению проблемы, не занимаясь различными деталями. К этому, более общему, типу проблем применяются процедуры асимптотических разложений, рекуррентных соотношений и производящих функций.

Асимптотика

Асимптота - особая линия (чаще всего прямая), являющаяся предельной для рассматриваемой кривой.

Асимптотика - это искусство оценивания и сравнения скоростей роста функций. Говорят, что при х ®¥ функция "ведёт себя, как х ", или "возрастает с такой же скоростью, как х ", и при х ®0 "ведёт себя, как 1/x ". Говорят, что "logx при x ®0 и любом e>0 ведёт себя, как x e , и что при n ®¥ растёт не быстрее, чем n logn ". Такие неточные, но интуитивно ясные утверждения полезны при сравнении функций так же, как и соотношения <, £ и = при сравнивании чисел.

Определим три основных асимптотических соотношения.

Определение 1. Функция f (x ) эквивалентна g (x ) при х ®x 0 , если и только если =1.

В этом случае говорят, что функция f (x ) асимптотически равна функции g (x ) или что f (x ) растёт с такой же скоростью, как и g (x ).

Определение 2 . f (x )=o(g (x )) при x ®x 0 , если и только если =0.

Говорят, что при x ®x 0 f (x ) растёт медленнее, чем g (x ), или что f (x ) "есть о-малое" от g (x ).

Определение 3. f (x )=О(g (x )) при x ®x 0 , если и только если существует константа С такая, что sup =С.

В этом случае говорят, что f (x ) растёт не быстрее, чем g (x ), или что при x ®x 0 f (x ) "есть О-большое" от g (x ).

Cоотношение f (x )=g (x )+o (h (x )) при x ®¥ означает, что f (x)-g (x )=o (h (x )). Аналогично f (x )=g (x )+О (h (x )) означает, что f (x )-g (x )(h (x )).

Выражения О(·) и о(·) могут использоваться также и в неравенствах. Например, неравенство x +o (x )£2x при x ®0 означает, что для любой функции f (x ) такой, что f (x )=o (x ), при x ®¥ имеет место соотношение x+f (x )£2x для всех достаточно больших значений х .

Приведём некоторые полезные асимптотические равенства.

Полином асимптотически равен своему старшему члену:

при x ®¥; (4.1)

при x ®¥; (4.2)

при x ®¥ и a k ¹0. (4.3)

Суммы степеней целых чисел удовлетворяют соотношению:

при n ®¥. (4.4)

Отсюда, в частности, имеем при n ®¥

В более общем случае при n ®¥ и для любого целого k ³0

; (4.6)

. (4.7)

Рекуррентные соотношения

Понятие рекуррентных соотношений проиллюстрируем на классической проблеме, поставленной и изученной Фибоначчи около 1200 г.

Фибоначчи поставил свою проблему в форме рассказа о скорости роста популяции кроликов при следующих предположениях. Все начинается с одной пары кроликов. Каждая пара кроликов становится фертильной (fertile – плодовитый) через месяц, после чего каждая пара рождает новую пару кроликов каждый месяц. Кролики никогда не умирают, и их воспроизводство никогда не прекращается. Пусть F n - число пар кроликов в популяции по прошествии n месяцев и пусть эта популяция состоит из N n пар приплода и O n “старых” пар, т.е. F n = N n + O n . Таким образом, в очередном месяце произойдут следующие события:

Старая популяция в (n +1)-й момент увеличится на число родившихся в момент времени n , т.е. O n+1 = O n + N n = F n ;

Каждая старая в момент времени n пара производит в момент времени (n +1) пару приплода, т.е. N n+1 = C n .

В последующий месяц эта картина повторяется:

O n+2 = O n+1 + N n+1 = F n+1 ,

N n+2 = O n+1 ;

объединив эти равенства, получим рекуррентное соотношение Фибонначи:

O n+2 + N n+2 = F n+1 + O n+1 ,

F n+2 = F n+1 + F n . (4.8)

Выбор начальных условий для последовательности чисел Фибоначчи не важен; существенные свойства этой последовательности определяются рекуррентным соотношением (4.8). Обычно полагают F 0 =0, F 1 =1 (иногда полагают F 0 =F 1 =1).

Рекуррентное соотношение (4.8) является частным случаем однородных линейных рекуррентных соотношений с постоянными коэффициентами:

x n = a 1 x n-1 + a 2 x n-2 +…a k x n-k , (4.9)

где коэффициенты a i не зависят от n и x 1 , x 2 , …, x k считаются заданными.

Существует общий метод решения (т.е. отыскания x n как функции n ) линейных рекуррентных соотношений с постоянными коэффициентами. Этот метод рассмотрим на примере соотношения (4.8). Найдём решение в виде

F n =cr n (4.10)

с постоянными с и r . Подставляя это выражение в (4.8), получим

cr n + 2 = cr n+ 1 + cr n ,

cr n (r n -r -1)=0. (4.11)

Это означает, что F n =cr n является решением, если либо с =0, либо r = 0 (и отсюда F n =0 для всех n ), а также (и это более интересный случай) если r 2 - r -1=0, причём константа с произвольна. Тогда из (4.11) следует

r = или r = . (4.12)

Число »1,618 известно как ²золотое² сечение, поскольку с древних времен считается, что треугольник (прямоугольник) со сторонами 1 и имеет наиболее приятные для глаза пропорции.

Сумма двух решений однородного линейного рекуррентного соотношения, очевидно, также является решением, и можно на самом деле показать, что общее решение последовательности Фибоначчи имеет вид

F n = , (4.13)

где константы с и с’ определяются начальными условиями. Положив F 0 =0 и F 1 =1, получим следующую систему линейных уравнений:

, (4.14)

решение которой даёт

c = -c" = . (4.15)

Линейные рекуррентные соотношения с постоянными коэффициентами. Основные определения и примеры рекуррентных соотношений Часто решение одной комбинаторной задачи удается свести к решению аналогичных задач меньшей размерности с помощью некоторого соотношения называемого рекуррентным от латинского слова recurrere – возвращаться. Тем самым решение сложной задачи можно получить последовательно находя решение более легких задач и далее пересчитывая по рекуррентным соотношениям находить решение трудной задачи. Рекуррентным соотношением го...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


аранов Виктор Павлович. Дискретная математика. Раздел 2. Элементы комбинаторики.

Лекция 5. Метод рекуррентных соотношений

Лекции 5. МЕТОД РЕКУРРЕНТНЫХ СООТНОШЕНИЙ

План лекции:

  1. Основные определения и примеры рекуррентных соотношений.
  2. Линейные рекуррентные соотношения с постоянными коэффициентами. Формула

Бине.

  1. Основные определения и примеры рекуррентных соотношений

Часто решение одной комбинаторной задачи удается свести к решению аналогичных задач меньшей размерности с помощью некоторого соотношения, называемого реку р рентным (от латинского слова recurrere – возвращаться). Тем самым решение сложной задачи можно получить, последовательно находя решение более легких задач, и далее, п е ресчитывая по рекуррентным соотношениям, находить решение трудной задачи.

Рекуррентным соотношением -го порядка между элементами последовательности чисел называется формула вида

(1)

Частным решением рекуррентного соотношения является любая последовател ь ность, обращающая соотношение (1) в тождество. Соотношение (1) им е ет бесконечно много частных решений, так как первые элементов последовательн о сти можно задать произвольно. Например, последовательность является р е шением рекуррентного соотн о шения, так как имеет место тождество.

Решение рекуррентного соотношения -го порядка называется общим , если оно з а висит от произвольных постоянных, и путем подбора этих постоянных мо ж но получить любое решение данного соотношения. Например, для соотнош е ния

(2)

общим решением будет

. (3)

Действительно, легко проверить, что последовательность (3) обращает соотношение (2) в тождество. Поэтому надо только показать, что любое решение соотношения (2) мо ж но представить в виде (3). Но любое решение этого соотношения однозначно определяе т ся значениями и. Поэтому надо доказать, что для любых чисел и найдутся т а кие значения и, что

Так как эта система имеет решение при любых значениях и, то решение (3) действительно является общим решением соотношения (2).

Пример 1 . Числа Фибоначчи. В 1202 г. знаменитым итальянским математиком Ле о нардо Пизанским, который известен больше по своему прозвищу Фибоначчи (Fib o nacci – сокращенное filius Bonacci , т. е. сын Боначчи), была написана книга « Liber abacci » («Кн и га об абаке»). До нас эта книга дошла во втором своем варианте, который относится к 1228 г. Рассмотрим одну из множества приведенных в этой книге задач.

Пара кроликов приносит раз в месяц приплод из двух крольчат (самки и самца), пр и чем новорожденные крольчата через два месяца после рождения уже приносят приплод. Сколько кроликов появится ч е рез год, если в начале года была одна пара кроликов?

Из условия задачи следует, что через месяц будет две пары кроликов. Через два мес я ца приплод даст только первая пара кроликов, и получится 3 пары. A еще через месяц приплод дадут и исходная пара кроликов, и пара кроликов, появившаяся два месяца тому назад. Поэтому всего будет 5 пар кроликов и т. д.

Обозначим через количество пар кроликов по истечении месяцев с начала г о да. Тогда через месяцев будут эти пар и еще столько новорожденных пар кр о ликов, сколько было в конце -го месяца, то есть еще пар. Таким образом, имеет место р е куррентное соотношение

. (4)

Так как, то последовательно находим: и т. д. Эти числа составляют последовательность

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,…,

которую называют рядом Фибоначчи , а его члены – числами Фибоначчи . Они обладают целым рядом замечательных свойств. Числа Фибоначчи связаны со следующей комбин а торной задачей.

Найти число двоичных слов длины, в которых никакие две единицы не идут по д ряд.

Будем называть такие слова правильными и обозначим их число через. Разобьем множество этих правильных слов на два класса: слова, оканчивающиеся на ноль, и слова, оканчивающиеся на единицу. Обозначим количество слов в этих классах и соо т ветственно. По правилу сложения

(5)

Очевидно, что у слова, оканчивающегося на ноль, первые символов образуют правильное слово длины, или другими словами, имеется биекция между множеством правильных слов длины, оканчивающихся на ноль, и множеством правильных слов длины, то есть.

Если правильное слово длины оканчивается на единицу, то предыдущий символ этого слова должен быть нулем, а первые символа должны образовывать правильное слово длины. Как и в предыдущем случае, снова имеем биекцию между множеством правильных слов длины, оканчивающихся на единицу, и множеством правильных слов длины. Следовательно. . Из формулы (5) получаем рекуррентное соотн о шение

. (6)

Для использования рекуррентного соотношения необходимы для данного вычи с ления всех предыдущих значений. Например, если нам нужно знать количество правил ь ных слов из 10 символов, то его можно найти, последовательно заполняя следующую та б лицу:

Таблица 1

Первые два значения находятся непосредственно (– слова 0 и 1; – слова 000, 010, 101), а остальные – по формуле (6).

Пример 2. Задача о расстановке скобок в выражении с неассоциативной бина р ной операцией. Пусть “” обозначает некоторую бинарную операцию. Рассмотрим в ы ражение, в котором символ обозначает некоторую бинарную неассоци а тивную операцию. Сколько имеется различных способов расстановки скобок в этом в ы раж е нии?

Как пример неассоциативной операции можно привести векторное произведение. Другой пример – обычное сложение и умножение, выполняемое на компьютере. В с и лу того, что представление каждого числа в памяти компьютера ограничено определе н ным количеством разрядов, при выполнении каждой операции возникает погрешность и су м марный результат этих погрешностей зависит от расстановки скобок. Пусть – маши н ный ноль . Это означает, что. Тогда, в то время как.

Обозначим число всевозможных способов расстановки скобок через. Тогда

Назовем операцию условно произведением. Для произвольного разобьем все способы расстановки скобок на классы, включив в -ый класс способы, при которых сн а чала вычисляется произведение первых и последних операндов с какой-то расст а новок скобок, а потом вычисляется их произведение:

(7)

где.

По определению количество способов расстановки скобок для вычисления первых операндов равно, последних – . По правилу произведения число расстановок ск о бок для выражения (4) равно. По правилу сложения

, (8)

Например, .

  1. Линейные рекуррентные соотношения с постоянными коэффициентами

Пусть функция в соотношении (1) является лине й ной

, (9)

где – некоторые числа. Такие соотношения называют линейными соотн о шениями -го порядка с постоянными коэффициентами.

Сначала исследуем подробно соотношения второго порядка, а затем перейдем к о б щему случаю. При из формулы (9) получим

, . (10)

Решение этих соотношений основано на следующих легко доказываемых утвержд е ниях.

Лемма 1. Пусть – решение соотношения (10), а – любое число. Тогда последовательность также является решен и ем этого соотношения.

Лемма 2. Пусть и – решения соотн о шения (10). Тогда последовательность также явл я ется решением этого соотношения.

Из этих двух простых лемм можно сделать следующий важный вывод. Совоку п ность всевозможных последовательностей с операциями покоо р динатного сложения и умножения на скаляр образует векторное пространство. Совоку п ность последовательностей, являющихся решениями соотношения (10), представляет с о бой подпространство этого пространства. Объемлющее пространство всевозможных п о следовательностей бесконечномерно, но подпространство решений линейного рекуррен т ного соотношения имеет конечную размерность, равную порядку уравн е ния.

Лемма 3. Размерность пространства решений рекуррентного соотношения (10) равна двум.

Из леммы 3 следует, что для определения всех решений уравнения (12) необходимо отыскать два линейно независимых решения. Любое другое решение будет представлят ь ся линейной комбинацией этих базисных решений.

Рассмотрим рекуррентное соотношение первого порядка

, (11)

где – константа.

Если, то из (11) имеем

, (12)

то есть решением рекуррентного уравнения первого порядка является геометрическая прогрессия.

Будем искать решение рекуррентного соотношения второго порядка также в виде (12). Тогда, подставляя (12) в (9), получим

. (13)

При =0 имеем нулевое решение, которое не представляет интереса. Считая, поделим последнее соотношение на:

(14)

Таким образом, геометрическая прогрессия (12) является решением рекуррентного соотношения (10), если знаменатель прогрессии является корнем квадратного уравн е ния (14). Это уравнение называется характеристическим уравнением для рекуррентного соо т ношения (9).

Построение базисных решений зависит от корней и характеристического уравнения (14).

  1. (). В этом случае имеем два решения и, которые л и нейно незав и симы. Чтобы убедиться в этом, покажем, что из формулы

(15)

путем соответствующего выбора констант можно получить любое решение соотношения (10). Рассмотрим произвольное решение. Выберем константы и так, чтобы при и:

(16)

Определитель линейной системы (16)

следовательно, система имеет единственное решение, а значит формула (15) – общее р е шения соотношения (10).

  1. . В случае кратных корней характеристическое уравнение (13) имеет вид или. Тогда, а для соотношения (10) п о лучим уравнение, которое дает два базисных решения и. Общее решение представляется в виде

. (17)

В случае соотношения -го порядка (9) имеют место утверждения, аналогичные тем, которые были рассмотрены для уравнений 2-го порядка.

  1. Совокупность всех решений уравнения (9) является подпространством в пр о странстве всех последовательностей.
  2. Размерность этого пространства равна, то есть каждое решение однозначно определяется своими первыми значениями.
  3. Для определения базиса подпространства решений составляется характеристич е ское уравнение

. (18)

Многочлен

(19)

называется характеристическим многочленом рекуррентного соотношения (9).

  1. Если характеристическое уравнение имеет различных корней, то общее решение рекуррентного соотношения (9) имеет вид

. (20)

При заданных начальных значениях решения, константы н а ходятся из системы

  1. Если – корень характеристического уравнения кратности, то соотношение (9) имеет следующие решения

Пусть характеристическое уравнение (18) имеет корни: ,…, кратности с о ответственно,…, причем. Тогда характеристический мног о член и общее решение соотношения (9) представятся в виде

Пример 3 . Формула Бине . Поставим задачу получить формулу в явном виде для ч и сел Фибоначчи. Для этого найдем решение рекуррентного соотношения (4) при условии, что. Составим характеристическое уравнение, найдем его корни и получим общее решение. Константы и опред е лим из начальных условий: . Тогда или

, (21)

где – золотое сечение. Формула (21) называется формулой Бине . При этом. Из формулы Бине следует, что.

Другие похожие работы, которые могут вас заинтересовать.вшм>

3792. Рациональность соотношений в активе предприятия 113.83 KB
Бухгалтерский баланс - основная форма бухгалтерской отчетности. Он характеризует имущественное и финансовое состояние организации на отчетную дату. В балансе отражаются остатки по всем счетам бухгалтерского учета на отчетную дату. Эти показатели приводятся в бухгалтерском балансе в определенной группировке.
8407. Константный метод 17.82 KB
Говорят, что метод объекта обладает свойством неизменности (константности), если после его выполнения состояние объекта не изменяется.Если не контролировать свойство неизменности, то его обеспечение будет целиком зависеть от квалификации программиста. Если же неизменный метод в процессе выполнения будет производить посторонние эффекты, то результат может быть самым неожиданным,отлаживать и поддерживать такой код очень тяжело.
13457. Метод фазовой плоскости 892.42 KB
Метод фазовой плоскости впервые был применен для исследования нелинейных систем французским ученым Анри Пуанкаре. Основное преимущество этого метода – точность и наглядность анализа движений нелинейной системы. Метод является качественным
2243. МЕТОД ВОЗМОЖНЫХ НАПРАВЛЕНИЙ 113.98 KB
Идея метода возможных направлений МВН заключается в том что в каждой очередной точке находится направление спуска такое что перемещение точки по этому направлению на некоторое расстояние не приводит к нарушению ограничений задачи. Направление определяемое вектором называется возможным направлением в точке если достаточно малое перемещение из в направлении не выводит точку за пределы допустимой области т. Очевидно если является внутренней точкой множества то любое направление в этой точке является возможным. Возможное...
12947. МЕТОД ГАРМОНИЧЕСКОЙ ЛИНЕАРИЗАЦИИ 338.05 KB
Переходя непосредственно к рассмотрению метода гармонической линеаризации будем считать что исследуемая нелинейная система приведена к виду показанному на. Нелинейный элемент может иметь любую характеристику лишь бы она была интегрируемой без разрывов второго рода. Преобразование данной переменной для примера нелинейным элементом с зоной нечувствительности показано на рис.
2248. Графический метод решения ЗЛП 219.13 KB
Точки лежащие внутри и на границе этой области являются допустимыми планами. А именно все точки отрезка АВ являются оптимальными планами задачи на которых достигается максимальное значение линейной формы. Метод последовательного улучшения плана Метод основан на упорядоченном переборе угловых точек множества планов задачи в сторону увеличения или уменьшения линейной формы и содержит три существенных момента. Вопервых указывается способ вычисления опорного плана.
7113. Метод гармонической линеаризации 536.48 KB
Метод гармонической линеаризации Поскольку этот метод является приближённым то полученные результаты будут близки к истине только при выполнении определённых допущений: Нелинейная система должна содержать только одну нелинейность; Линейная часть системы должна представлять собой фильтр низких частот ослабляющий высшие гармоники возникающие в предельном цикле; Метод применим только к автономным системам. Изучается свободное движение системы то есть движение при ненулевых начальных условиях в отсутствие внешних воздействий....
10649. Индексный метод анализа 121.13 KB
Индивидуальные индексы. Общие агрегатные индексы. Средние преобразованные индексы. Индексы переменного и постоянного состава индексы структурных сдвигов.
12914. Метод наименьших квадратов 308.27 KB
Пусть из теоретических соображений мы знаем что. Поэтому можно сказать что наша задача состоит и в том чтобы провести прямую наилучшим образом. Будем считать что вся ошибка заключена в. Будем подбирать искомые коэффициенты из соображений чтобы случайная добавка была наименьшей.
9514. Метод бухгалтерського обліку 1002.23 KB
Бухгалтерські рахунки та їх побудова. Він складається з ряду елементів головні з яких: документація; інвентаризація; рахунки; подвійний запис; оцінка; калькуляція; баланс; звітність. Рахунки бухгалтерські призначені для обліку наявності активів і пасивів. Бухгалтерські рахунки та їх побудова.

РЕКУРРЕНТНЫЕ СООТНОШЕНИЯ

РЕКУРРЕНТНЫЕ СООТНОШЕНИЯ

(от лат. recur-rens, род. падеж recurrentis - возвращающийся) - однотипные ф-лы, к-рые связывают между собой идущие друг за другом нек-рой последовательности (это может быть последовательность чисел, ф-ций и т. д.). В зависимости от природы объектов, связанных Р. с., эти соотношения могут быть алгебраическими, функциональными, дифференциальными, интегральными и т. п.

Наиб. известный класс Р. с.- это рекуррентные ф-лы для специальных функций. Так, для цилиндрических функций Z m (x )P. с. имеют вид

Они позволяют по ф-ции Z m0 (x )найти ф-ции Z m (x )п-ри т = т 0 b 1, т 0 b 2 и т. д. либо, напр., по значениям ф-ций в нек-рой точке х 0 . 0 найти (в численных расчётах) значение любой из ф-ций

В этой же точке (здесь m 0 - любое вещественное число).

Др. важный класс Р. с. дают многочисленные методы последовательных приближений (см. Итераций метод); сюда же примыкают и методы возмущений теории.

В квантовой механике есть ещё один вид Р. с., связывающих между собой векторы в гильбертовом пространстве состояний. Напр., стационарные гармония, осциллятора параметризуются целыми неотрицательными числами. Соответствующие векторы, обозначаемые , где n - целое, при разных n могут быть получены друг из друга действием операторов рождения а + и уничтожения а :


Эти соотношения можно разрешить, выразив любой вектор через (наинизшее энергетич. состояние, h = 0):


Обобщением этой конструкции является представление вторичного квантования в квантовой статистич. механике и квантовой теории поля (см. Фока пространство).

Типичный пример Р. с. в статистич. механике - ур-ния для частичных ф-ций распределения, образующие цепочку Боголюбова (см. Боголюбова уравнения); знание таких ф-ций позволяет найти все термодинамич. характеристики системы.

В квантовой теории поля динамич. содержится, напр., в Грина функциях. Для их вычисления используют разл. приближения, чаще всего - расчеты по теории возмущений. Альтернативный подход основан на интегродифференциальных Дайсона уравнениях, являющихся Р. с.: ур-ние для двухточечной ф-ции Грина содержит четырёхточечную и т. д. Как и ур-ния Боголюбова, эту систему удаётся решать, лишь "оборвав" цепочку (место "обрыва" выбирается обычно из физ. соображений и определяет получаемое ).

Ещё один вид Р. с. в квантовой теории поля - У орда тождества в теориях калибровочных полей. Эти тождества также представляют собой цепочку интегродифференциальных соотношений, связывающих между собой ф-ции Грина с разл. числом внешних линий, p являются следствием калибровочной инвариантности теории. Решающую роль они играют для проверки калибровочной симметрии при проведении процедуры перенормировки.

Наконец, сама - тоже рекуррентная процедура: на каждом шаге (в каждой следующей петле) используются контрчлены, полученные из вычисления диаграмм с меньшим числом петель (подробнее см. R-операция). А. М. Малокостов.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "РЕКУРРЕНТНЫЕ СООТНОШЕНИЯ" в других словарях:

    рекуррентные соотношения - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN recurrence relations … Справочник технического переводчика

    - (функции Вебера) общее название для специальных функций, являющихся решениями дифференциальных уравнений, получающихся при применении метода разделения переменных для уравнений математической физики, таких как уравнение Лапласа, уравнение… … Википедия

    Или считалка Джозефуса известная математическая задача с историческим подтекстом. Задача основана на легенде, что отряд Иосифа Флавия, защищавший город Йодфат, не пожелал сдаваться в плен блокировавшим пещеру превосходящими силам римлян.… … Википедия

    Пафнутий Львович Чебышёв В математике последовательностью ортогональных многочленов называют бесконечную последовательность действительных многочленов … Википедия

    Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/22 ноября 2012. Пока процесс обсуждени … Википедия

    Последовательность Падована это целочисленная последовательность P(n) с начальными значениями и линейным рекуррентным соотношением Первые значения P(n) таковы 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265 … Википедия

    Многочлены Эрмита определённого вида последовательность многочленов одной вещественной переменной. Многочлены Эрмита возникают в теории вероятностей, в комбинаторике, физике. Эти многочлены названы в честь Шарля Эрмита. Содержание 1… … Википедия

    - (функции Бесселя) решения Zv(z)ур ния Бесселя где параметр (индекс) v произвольное действительное или комплексное число. В приложениях чаще встречается ур ние, зависящее от четырёх параметров: решения к рого выражаются через Ц … Физическая энциклопедия

    Метод решения системы линейных алгебраич. уравнений А х= b с эрмитовой невырожденной матрицей А. Среди прямых методов он наиболее эффективен при реализации на ЭВМ. Вычислительная схема метода в общем случае основана на факторизации эрмитовой… … Математическая энциклопедия

    Модифицированные функции Бесселя это функции Бесселя от чисто мнимого аргумента. Если в дифференциальном уравненни Бесселя заменить на, оно примет вид Это уравнение называется модифицированным уравнением Бессел … Википедия

Рекуррентное соотношение имеет порядок k , если оно позволяет выразить f(n+k) через f(n), f(n+1), …, f(n+k-1).

Пример.

f(n+2)=f(n)f(n+1)-3f 2 (n+1)+1 – рекуррентное соотношение второго порядка.

f(n+3)=6f(n)f(n+2)+f(n+1) – рекуррентное соотношение третьего порядка.

Если задано рекуррентное соотношение k-го порядка, то ему могут удовлетворять бесконечно много последовательностей, так как первые k элементов последовательности можно задать произвольно – между ними нет никаких соотношений. Но если первые k членов заданы, то все остальные элементы определяются однозначно.

Пользуясь рекуррентным соотношением и начальными членами, можно один за другим выписывать члены последовательности, при этом рано или поздно мы получим любой её член. Однако если необходимо узнать только один определенный член последовательности, то нерационально вычислять все предыдущие. В этом случае удобнее иметь формулу для вычисления n-го члена.

Решением рекуррентного соотношения называется любая последовательность, для которой данное соотношение выполнено тождественно.

Пример . Последовательность 2, 4, 8, …, 2 n является решением для соотношения f(n+2)=3∙f(n+1) – 2∙f(n).

Доказательство . Общий член последовательности имеет вид f(n)=2 n . Значит, f(n+2)= 2 n+2, f(n+1)= 2n+1 . При любом n имеет место тождество 2 n+2 =3∙2 n+1 – 2∙2 n . Следовательно, при подстановке последовательности 2 n в формулу f(n+2)=3f(n+1) – 2f(n) соотношение выполняется тождественно. Значит, 2 n является решением указанного соотношения.

Решение рекуррентного соотношения k-го порядка называется общим , если оно зависит от k произвольных постоянных α 1 , α 2 , … α k и путем подбора этих постоянных можно получить любое решение данного соотношения.

Пример . Дано рекуррентное соотношение: f(n+2)=5f(n+1)-6f(n). Докажем, что его общее решение имеет вид: f(n)= α 2 n + β3 n .

1. Сначала докажем, что последовательность f(n)=α 2 n + β3 n является решением рекуррентного соотношения. Подставим данную последовательность в рекуррентное соотношение.

f(n)= α 2 n + β 3 n , значит, f(n+1)= (α 2 n+1 + β 3 n +1), f(n+2)= α 2 n+2 + β 3 n +2 , тогда



5f(n+1)-6f(n)=5∙(α 2 n+1 + β 3 n +1)-6∙(α 2 n + β 3 n)= α (5 2 n+1 –6 2 n)+ β (5 3 n +1 –6 3 n)= =α2 n ∙(10–6)+ β 3 n ∙(15 – 6)= α 2 n+2 + β 3 n +2 = f(n+2).

Рекуррентное соотношение выполняется, следовательно, α 2 n + β 3 n является решением данного рекуррентного соотношения.

2. Докажем, что любое решение соотношения f(n+2)=5f(n+1)–6f(n) можно записать в виде f(n)= α 2 n + β 3 n . Но любое решение рекуррентного соотношения второго порядка однозначно определяется значениями первых двух членов последовательности. Поэтому достаточно показать, что для любых а=f(1) и b=f(2) найдутся α и β такие, что 2 α +3 β =а и 4 α +9 β =b. Легко видеть, что система уравнений имеет решение для любых значений а и b.

Таким образом, f(n)= α 2 n + β 3 n является общим решением рекуррентного соотношения f(n+2)=5f(n+1)–6f(n).

Линейные рекуррентные соотношения с постоянными коэффициентами

Для решения рекуррентных соотношений общих правил нет, но существует часто встречающийся класс рекуррентных соотношений, для которых известен алгоритм их решения. Это – линейные рекуррентные соотношения с постоянными коэффициентами, т.е. соотношения вида:

f(n+k)=c 1 f(n+k-1)+c 2 f(n+k-2)+…+c k f(n).

Найдем решение общего линейного рекуррентного соотношения с постоянными коэффициентами первого порядка.

Линейное рекуррентное соотношение с постоянными коэффициентами первого порядка имеет вид: f(n+1)=c f(n).

Пусть f(1)=а, тогда f(2)=c∙f(1)=c∙a, f(3)=c∙f(2)=c 2 ∙a, аналогично f(4)=c 3 ∙a и так далее, заметим, что f(n)=c n -1 ∙f(1).

Докажем, что последовательность c n -1 ∙f(1) является решением рекуррентного соотношения первого порядка. f(n)=c n -1 ∙f(1), значит, f(n+1)=c n f(1). Подставляя это выражение в соотношение, получим тождество c n f(1)=с∙ c n -1 ∙f(1).

Рассмотрим теперь подробнее линейные рекуррентные соотношения с постоянными коэффициентами второго порядка , то есть соотношения вида

f(n+2)=C 1 ∙f(n+1)+C 2 ∙f(n). (*).

Заметим, что все рассуждения сохраняются и для соотношений более высокого порядка.

Свойства решений :

1) Если последовательность x n является решением (*), то и последовательность a∙x n тоже является решением.

Доказательство.

x n является решением (*), следовательно, выполняется тождество x n +2 =C 1 x n +1 +C 2 x n . Домножим обе части равенства на a. Получим a∙x n +2 =a∙(С 1 ∙x n +1 +С 2 ∙x n)= С 1 ∙a∙x n +1 +С 2 ∙a∙x n . Это означает, что ax n является решением (*).

2) Если последовательности x n и y n являются решениями (*), то и последовательность x n +y n тоже является решением.

Доказательство.

x n и y n являются решениями, следовательно, выполняются следующие тождества:

x n +2 =C 1 x n +1 +C 2 x n .

y n +2 =C 1 y n +1 +C 2 y n .

Выполним почленное сложение двух равенств:

x n +2 +y n +2 =С 1 ∙x n +1 +С 2 ∙x n + С 1 ∙y n +1 +С 2 ∙y n = С 1 ∙(x n +1 + y n +1)+С 2 ∙(x n +y n). Это означает, что x n +y n является решением (*).

3) Если r 1 является решением квадратного уравнения r 2 =С 1 r+С 2 , то последовательность (r 1) n является решением для соотношения (*).

r 1 является решением квадратного уравнения r 2 =С 1 r+С 2 , значит, (r 1) 2 =C 1 r 1 +C 2 . Помножим обе части равенства на (r 1) n . Получим

r 1 2 r 1 n =(С 1 r 1 +С 2) r n .

r 1 n +2 =С 1 r 1 n +1 +С 2 r 1 n .

Это означает, что последовательность (r 1) n является решением (*).

Из этих свойств вытекает способ решения линейных рекуррентных соотношений с постоянными коэффициентами второго порядка:

1. Составим характеристическое (квадратное) уравнение r 2 =С 1 r+С 2 . Найдём его корни r 1, r 2. Если корни различны, то общее решение имеет вид f(n)= ar 1 n +βr 2 n .

2. Найдём коэффициенты a и β. Пусть f(0)=a, f(1)=b. Система уравнений

имеет решение при любых а и b. Этими решениями являются

Задача. Найдем формулу для общего члена последовательности Фибоначчи.

Решение. Характеристическое уравнение имеет вид х 2 =х+1 или х 2 -х-1=0, его корнями являются числа , значит, общее решение имеет вид f(n)= . Как нетрудно видеть, из начальных условий f(0)=0, f(1)=1 вытекает, что a=-b=1/Ö5, и, следовательно, общее решение последовательности Фибоначчи имеет вид:

.

Что удивительно, это выражение при всех натуральных значениях n принимает целые значения.